Reactive Power Management Through Capacitor & APFC

Context

Presentation Covers

- Rajasthan Bill Tariff
- Existing Bill Pattern
- > What is Power Factor ?
- > Why to Maintain ?
- How to Maintain
- Case Study

Rajasthan State

Rajasthan State having 3 Discoms

- Ajmer Vidyut Vitran Nigam Ltd
- Jaipur Vidyut Vitran Nigam Ltd.
- Jodhpur Vidyut Vitran Nigam Ltd.

Following table is the contract demand and corresponding voltage for all 3 Discoms

Contract demand	Voltage of Supply kV
For Low and Medium	0.433
Upto 1500 KVA	11
Above 1500 KVA up to 5000 KVA	33
Above 5000 KVA	132 or 220

© Confederation of Indian Industry

Rajasthan State

For the 3 Discoms (Vidyut Vitran Nigam of Rajasthan)

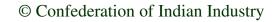
Billing is in kWh

Existing Tariff of Electricity						
02.11.2017 onwards						
Energy Charges	Fixed Charges (per connection per					
per Unit (Rs.)	month) (Rs.)					
6.00	Rs. 65/- per HP per month					
6.45	Rs. 65/- per HP per month					
7.00	Rs. 75/- per HP per month or Rs. 165 per					
	KVA of billing demand per month					
	Energy Charges per Unit (Rs.) 6.00 6.45					

Rajasthan State

Power factor Clause for all 3 Discoms of Rajasthan

- Consumer should have to maintain Power factor not less than 0.90.
- A surcharge at 0.1% of energy charges for energy 0.001 fall in average power below 0.900 shall be charged.
- An Incentive of 1% of Energy Charges shall be provided if the power factor is above 0.95 (95%) for each 0.01 (1%) improvement above 0.95 (95%).



			ON THE OWNER OF THE OWNER	1.	8562E बिल <u>म</u> ें 10331016 27-240876 टोल फ्री शिकायत मं. <u>180</u>	01806565
नाम			E.	क्रम. सं.	विवरण	बिल राशि (रु.)
पता				1.	विद्युत खर्च	18340.0
1 stat				2.	स्थाई शुल्क 🧧 🍐	4350.00
				3.	डिमांड सरचार्ज	and the second
मोवाइत			. [4.	पावर फैक्टर सरचार्ज (+) प्रोत्साहन (-)/शंट केपेसिटर सरचार्ज (.3%)	
ईमेल :	1			5.	अनाधिकृत उपभोग राशि	
के. नंबर:	11033101272	9		6.	सी.टी./पी.टी./मीटर किराया	100.00
RSN:	20			7.	ट्रांसफार्मर किराया	•
सेवा क्रमांक	1.0	अमानत राशि	15080.00	8.	अन्य	1222.15
वर्तमान खाता संख	1 0591/0145	a and the	Same - Josef	9.	रिबेट्स (-) (i) वोल्टेज	an owner and the same title
बिल माह	Mar/2018	कुल माह बिल	1.0000	1	(ii) सोलर⁄स्प्रिंक्लर⁄ग्रामीण रियायत	a strange and and a
ह फीडर कोड	11F1038107	丿 टैरिफ कोड	6000XA	1 10.	निगम राशि (क्रम सं. 1 से 9 तक का योग)	24012.15
स्वी. श्रेणी	MIP			11.	. विद्युत शुल्क वर्तमान उपभोग पर	1048.00
स्वी. लोड (कि.वा./हा.पॉ.)	58.00 HP	कनेक्टेड लोड (कि.वा./हा.पॉ.)	58.00 HE	12.	. जल संरक्षण उपकर	262.00
कांट्रेक्ट डिमांड (के.लि	I.U.)	शहरी/ग्रामीण	URBAN	13.	• नगरीय उपकर	393.00
ह सप्लाई वोल्टे	400 V	मीटरिंग वोल्टेज		14	. अन्य देय⁄जमा कोड निगम राशि	
मीटर स्वामित्व		🔒 मीटरिंग टाइप		15	. अन्य देय/जमा कोड विद्युत शुल्क 🗾 🥠	June 1 (1977)
यांवर फैक्टर	0.903	बिलिंग डिमांड		16	. अन्य देय/जमा कोड जल संरक्षण उपकर	al shart :
हे औसत मासिक उप	^{1भोग} 2244	मीटर सुरक्षा राशि	रा	17	. अन्य देय⁄जमा कोड नगरीय उपकर	

© Confederation of Indian Industry

Al			य फोन नं.			8001806565. बिल राशि (रु.)
ाम			- t.	क्रम.	सं विवरण	17640.00
ता				1.	विद्युत खर्च	9695 Armit
इण्ह				2.	स्थाई शुल्क	4350.00
				3.	डिमांड सरचार्ज	
बाइल नं.			LAR	4.	पावर फैक्टर सरचार्ज (+) प्रोत्साहन (-)/शंट केपेसिटर सरचार्ज (3%	2081.52
				5.	अनाधिकृत उपभोग राशि	
नेल :	11033101272	29 .	The second	6.	सी.टी./पी.टी./मीटर किराया	100.00
. नंबर: SN:	20	10 100		7.	ट्रांसफार्मर किराया	
वा क्रमांक		अमानत राशि	15080.00	8.	अन्य	and the in
मान खाता संख्या	0591/0145	atter	and the second second	9.	रिबेट्स (-) (i) वोल्टेज	and that we have
ल माह	Nov/2017 -	कुल माह बिल	1.0000	1	(ii) सोलर⁄स्प्रिंक्लर⁄ग्रामीण रियायत	24171.52
	11F1038107	टैरिफ कोड	6000XA	10.	निगम राशि (क्रम सं. 1 से 9 तक का योग)	1.1.
कोड			18 2000	11.	विद्युत शुल्क वर्तमान उपभोग पर	1008.00
ते. श्रेणी ते. स्रोह	MIP	कनेक्टेड लोड	8.00 HP	12.	जल संरक्षण उपकर	252-00
	58.00 HF	(कि.वा./हा.पा.) शहरी/ग्रामीण		5	नगरीय उपकर CIIICE of the	AEN-YO-284
कट डिमांड (क.वि.ए.)	400 V	मीटरिंग वोल्टेज	400 V		अन्य देय/जमा कोड निगम राशि 💦 🖸 CODE	No1836
लाई वोल्टेज	400 0	मीटरिंग टाइप	TVM	Jack 1 . 11	अन्य देय/जमा कोड विद्यु शुल्फ	102831
टर स्वामित्व	0.782	बिलिंग डिमांड	- States	16.	अन्य देय/जमा कोड जल संरक्षण उपकर 9-1	1-2017
वर फैक्टर	2244	मीटर सुरक्षा राशि	t Il	17. 3	अन्य देय/जमा कोड नगरीय उपकर	101923
सत मासिक उपभोग वि.च.)	OK	उपभोक्ता की स्थिति	R	18. 3	भन्य देय/जमा कोड/एल.ई.डी./डेर्फड योजना भुगतान	

			4 4017 1	0151	32-240376 टोल फ्री शिकायत नं.13	531953 001806565
नाम उता			12.	क्रम. सं	विवरण	बिल राशि (रु.)
म् मि मि				1.	विद्युत खर्च	20580.0
2			1	2.	स्थाई शुल्क 🧹	4350.00
				3.	डिमांड सरचार्ज	1. 1. 1.
मोबाइल			LAR	4.	पावर फैक्टर सरचार्ज (+) प्रोत्साहन (-)/शंट केपेसिटर सरचार्ज (3%	13335.84
ईमेल :	1. 1. 1.	di la		5.	अनाधिकृत उपभोग राशि 👘	1
के. नंबरः	110331012729			6.	सी.टी./पी.टी./मीटर किराया 🗾	100.00
RSN:	20			7.	दूांसफामंर किराया 👘 💋 🎢	
सेवा क्रमांक 🐳	3	अमानत राशि	15080.00	8.	अन्य	
वर्तमान खाता संख्या	0591/0145	and the second	Strange &	9.	रिबेट्स (-) (i) वोल्टेज	2 B +
बिल माह	Nay/2017	कुल माह बिल	1.9000		(ii) सोलर/स्प्रिंक्लर/ग्रामीण रियायत	
फीडर कोड	11F1038107	टैरिफ कोड	6000XA	10.	निगम राशि (क्रम सं. 1 से 9 तक का दोग)	38365.84
स्वी. श्रेणी	BIP	at the	1	11.	विद्युत शुल्क वर्तमान उपभोग पर	1176.00
स्वी. लोड (कि.व./हा.पॉ.)	58.00 HP	कनेक्टेड लोड	58.00 HF	12.	जल संरक्षण उपकर मार्ग हो हो हो हो हो हो	1 (() 294.00
कांट्रेक्ट डिमांड (के.वि.ए.)		शहरी/ग्रामीण		13.	नगरीय उपका 5.0. CODE NO	
सप्लाई वोल्टेज	400 V	मीटरिंग वोल्टेज	400 V	14.	अन्य देय/जमा काइ सिम्प्रि दि दि	
मीटर स्वामित्व	Y THEY	मीटरिंग टाइप	דעת	15.	अन्य देय/जमा कोड विद्युत शुल्क 7 MAV 001	
<mark>पॉवर</mark> फैक्टर	0.252	बिलिंग डिमांड		16.	अन्य देय/जमा कोइजल संरक्षण उपकर	and long
औसत् मासिक उपभोग	2244	मीटर सुरक्षा राशि	1 1 1 1	17.	अन्य देय / जमस्ति डानगरीय उपकर	111

नाम			फोन नं.		2-240876 टोल फ्री शिकायत नं1800 विवरण	बिल राशि (रु.
पता हु				1.	विद्युत खर्च	7083.50
1				2.	स्थाई शुल्क	975.0
			All A	3.	डिमांड सरचार्ज	
मोबाइल			AR	4.	पावर फैक्टर सरचार्ज (+) प्रोत्साहन (-)/शंट केपेसिटर सरचार्ज (3%)	
ईमेल :	1. A	Sec. A star	1.2.1	5.	अमुखिकृत उपभोग राशि	-
के. नंबर:	11033101215	6	Sellin 1	po.V	सी.टी./पीटी./मीटर किराया	
RSN:	217	Prost in the	0 9	7.	व्यक्तिमंर किराया	
सेवा क्रमांक		अमानत करि 1 2	9.20	1	अन्य	274.2
वर्तमान खाता संख्या	040370087	1000	OL I	0%.	रिबेट्स (-) (i) वोल्टेज	al de la sin
बिल माह	Mar/2018	मुल मह लिम - (1000		(ii) सोलर/स्प्रिंक्लर/ग्रामीण रियायत	frank
फीडर कोड	11F1038107	दिरिफ कोड 500	DXA	10.	निगम राशि (क्रम सं. 1 से 9 तक का योग)	8312.7
स्वी. श्रेणी	SIP	Cit	1.91	11.	विद्युत शुल्क वर्तमान उपभोग पर	452.0
स्वी. लोड (कि.चा./हा.पॉ.)	15.00 HP	कनेक्टे लोड	A HF	112.	जल संरक्षण उपकर	ah 113.0
कांट्रेक्ट डिमांड (क.वि.ए.)		शहरी/ग्रामीण	Do a Do	/13.	नगरीय उपकर	NAGAUR
सप्लाई वोल्टेज	400 V .	मीटरिंग बोल्टेज 100	200	14.	अन्य देय/जमा कोड निगम राशि	MAR No
मीटर स्वामित्व	8°	मीटरिंग टोइप	A	15.	अन्य देय/जमा कोड विद्युत शुल्क	
पॉवर फैक्टर	1 minutes	बिलिंग डिमांड	V	16.		2018
औसतू मासिक उपभोग	16	मीटर सुरक्षा राशि	11 18 14	17	भारा हेग (जाम को द जागीण वाक्स)	Sanad!

Power Factor

Introduction

Power Factor Basics

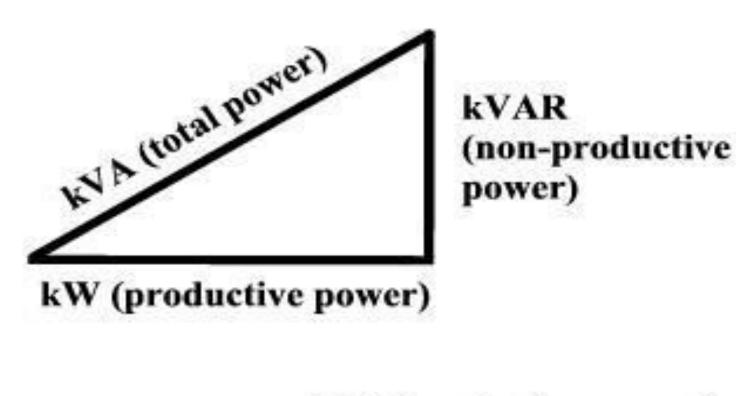
Two Types of Power In System

- **1. Active Power**
- 2. Reactive Power

Power Factor

Active Power

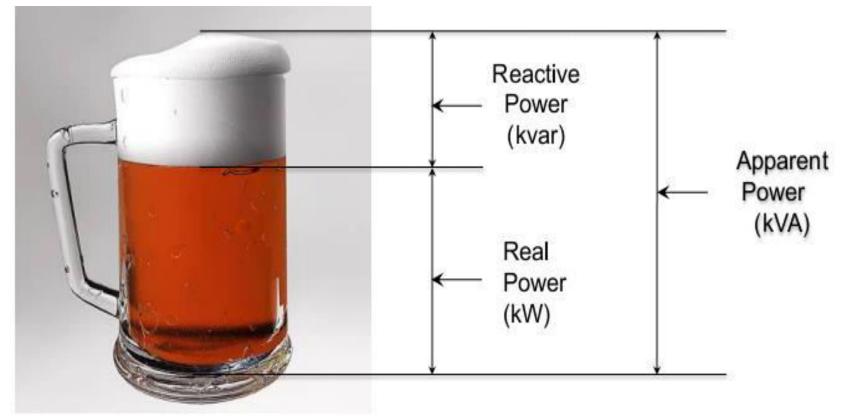
- This involves transfer of Real Power from system to end user
- When Voltage and Current are in Phase with each other


Power Factor

Reactive Power

- This involves establishment of Magnetic field or Electric Field
- > No transfer of Real Power is involved
- When Voltage and Current are out of phase by 90o

Power Triangle



Power Factor = kW (productive power) kVA (total power)

Analogy

Power factor = $\underline{kW} = \underline{kW} = \underline{Beer}$ KVA $\underline{kW} + KVAr$ Beer + Foam

Power Factor

How Poor operating power factor cost money?

- Maximum demand increases for the same load
- > Draws more current for the same load
- More distribution voltage drop i.e loss in the distribution cable increase
- > Copper loss in the transformer increase

Automatic Power Factor Controller

© Confederation of Indian Industry

Selection of APFC

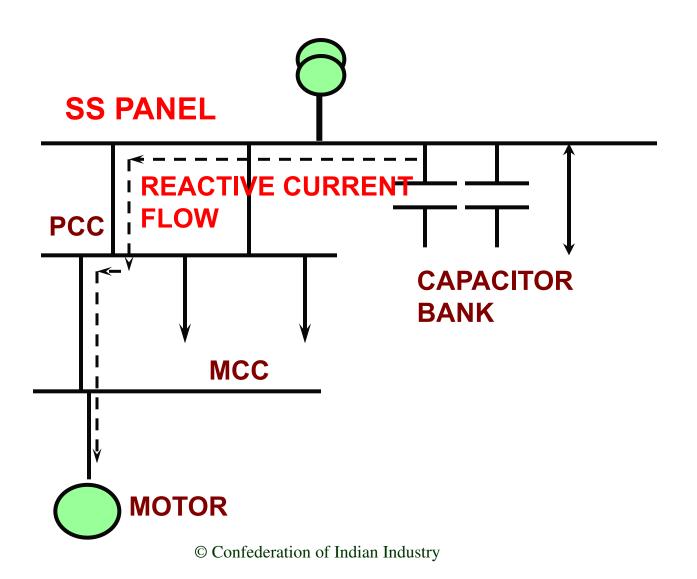
The category of APFC is generally 3 types.

Current - Sensing based APFC

> Power Factor Sensing based APFC

kVAr Sensing based APFC

Types of APFC Panels


Contactor based APFC < 10 Sec</p>

> Thyristors Based APFC < 1 Sec

Microcontroller Based APFC < 5 milisec</p>

Power Factor Compensation Centralized compensation

Power Factor Compensation

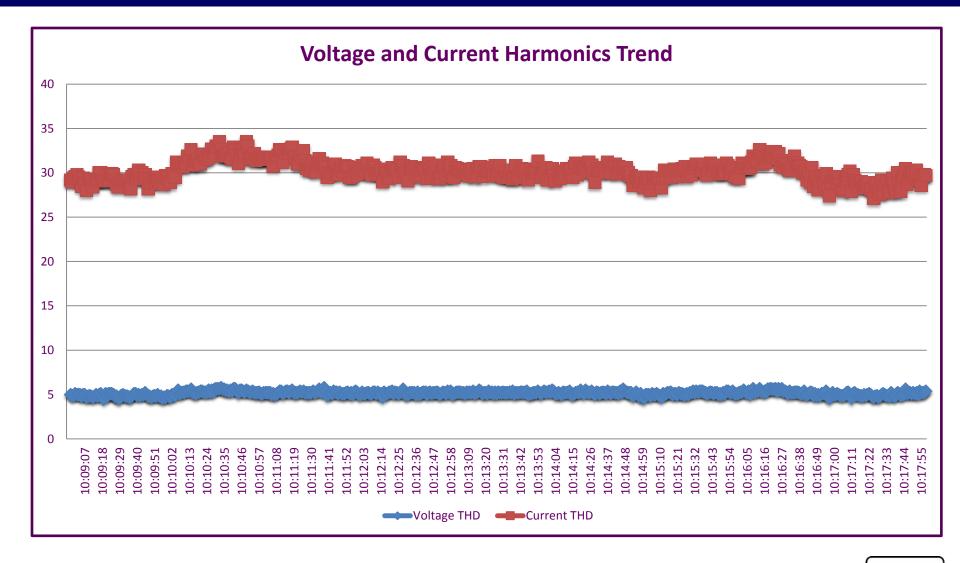
Centralized Compensation

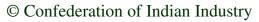
Advantages

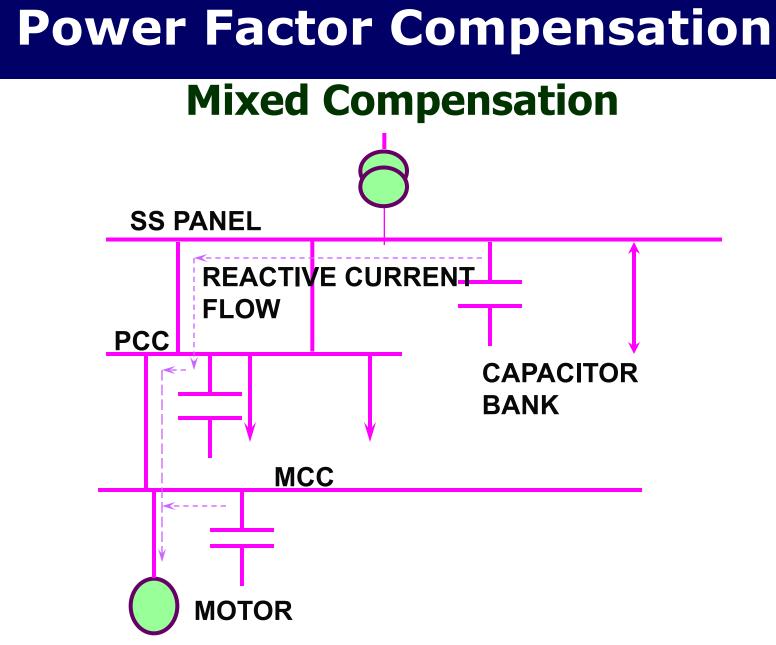
Easy P.F maintenance

Capacitor maintenance easy Disadvantages

- > More voltage drop in distribution
- > Over heating of cable resulting in failure


Common in engineering industry




Power Factor Compensation Distributed Compensation SS PANEL PCC MCC MOTOR MOTOR

Power Factor Compensation

Power Factor Compensation

Mixed Compensation

Advantages

- Good P.F control
- Easy maintenance
- Low distribution losses

Common in cement industry

- Electrical Distribution system studied
- Over all power factor 0.94-0.95
- Possibility to improve to unity

Power factor for last 11 months in Plant -1

Month & Year	Power Factor	Opportunity	Opportunity
		PF = 0.99	PF = 1.0
Apr-12	0.937	69776	77529
May-12	0.946	68279	75865
Jun-12	0.95	56257	62508
Jul-12	0.95	61542	68380
Aug-12	0.944	70029	77810
Sep-12	0.964	49614	55127
Oct-12	0.968	53986	59984
Nov-12	0.944	104064	115626
Dec-12	0.933	123211	136901
Jan-13	0.963	69454	77171
Feb-13	0.951	87105	96784
Total		813317	903685

Power factor for last 10 months in Plant -2

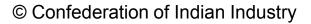
Month & Year	Power Factor	Opportunity	Opportunity
		PF = 0.99	PF = 1.0
May-12	0.921	83601	92889
Jun-12	0.904	92388	102654
Jul-12	0.955	50955	56617
Aug-12	0.95	59487	66096
Sep-12	0.929	102704	114116
Oct-12	0.923	137813	153125
Nov-12	0.932	201558	223953
Dec-12	0.966	59678	66309
Jan-13	0.963	134807	149786
Feb-13	0.944	134160	149067
Total		1057151	1174612

Bill Analysis

Plant	Avg. Power Factor	Total Bill Last FY 2012-13	Opportunity			
			PF = 0.99	% age	PF = 1.0	%age
Plant-1	0.950	2.32 Crores	8.87 Lakhs	3.83 %	9.86 Lakhs	4.26 %
Plant-2	0.939	2.33 Crores	12.69 Lakhs	5.44 %	14.10 Lakhs	6.04 %

Action Plan

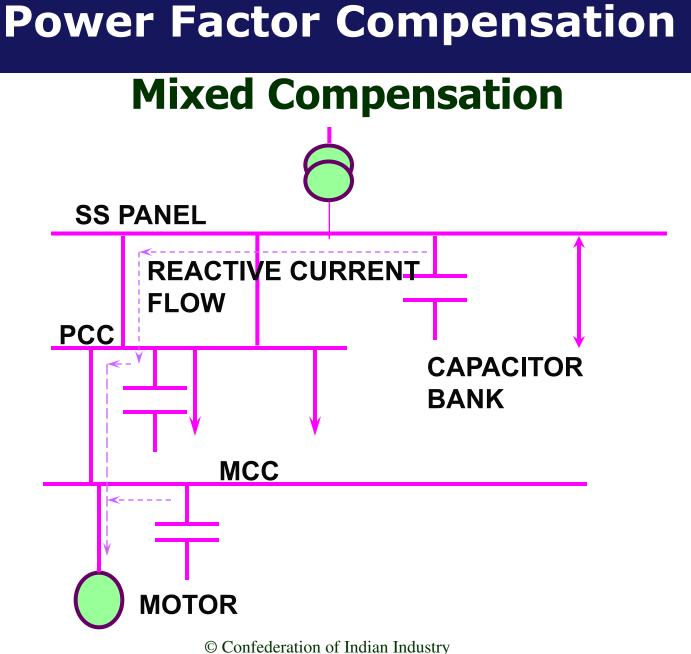
- > Maintenance of existing system
- Installation of APFC Panels at different areas


© Confederation of Indian Industry

	Capacitor Health Checkup 1250 KVA Transformer							
Capacitor Detail	Rating	Ideal Current	Curre	ent in Phases (An	npere)			
	KVAR	Ampere	R	Y	В			
Capacitor No 1	25	28-30	15.5	8.8	8.8			
Capacitor No 2	25	28-30	0	0	0			
Capacitor No 3	25	28-30	20.1	20.8	20.2			
Capacitor No 4	25	28-30	20.8	20.6	20.2			
Capacitor No 5	25	28-30	0	0	0			
Capacitor No 6	25	28-30	17.8	8.6	23.2			
Capacitor No 7	25	28-30	0	0	0			
Capacitor No 8	25	28-30	25.3	25.4	0			
Capacitor No 9	25	28-30	19.3	20.3	21.8			
Capacitor No 10	25	28-30	23.8	23.2	30.8			
Capacitor No 11	25	28-30	28.3	28.9	29.7			
Capacitor No 12	25	28-30	0	0	0			
Capacitor No 13	25	28-30	29.6	29.3	29.7			
Capacitor No 14	50	58-60	45	50.2	50.8			
Capacitor No 15	50	58-60	53	61.4	53.1			
Capacitor No 16	50	58-60	0	0	0			
Capacitor No 17	50	58-60	34.2	37.4	28.5			
Capacitor No 18	50	58-60	60.7	51.1	52.6			
Capacitor No 19	50	58-60	53.1	52.8	61. <u>2</u>			

© Confederation of Indian Industry

	Capacitor	Health Checkup 800	KVA Transfor	mer	
Capacitor Detail	Rating	Ideal Current	Curre	nt in Phases (A	mpere)
	KVAR	Ampere	R	Y	В
Capacitor No 1	25	28-30	24.9	32	24.5
Capacitor No 2	25	28-30	28	28.6	27.4
Capacitor No 3	25	28-30	28.5	28.7	0
Capacitor No 4	25	28-30	27.4	57.6	66.7
Capacitor No 5	25	28-30	24.8	26.2	25
Capacitor No 6	50	58-60	54	52.4	32.3
Capacitor No 7	25	28-30	21.1	22.5	20.8
Capacitor No 8	50	58-60	55.7	0	55.8
Capacitor No 9	25	28-30	27.3	27.3	26.7
Capacitor No 10	25	28-30	32.7	32.4	32
Capacitor No 11	50	58-60	65.7	64.9	64.4
Capacitor No 12	25	28-30	32.6	32.2	32.4
Capacitor No 13	25	28-30	32.2	35	35.4
Capacitor No 14	25	28-30	32.5	32.4	32.1



Sr. No.	Section Description	Voltage	Currents	Power	Power Factor
		Volts	Amperes	kW	
1	Bonding and Tool Room	395	224	117	0.74
2	DTA Moulding 1	397	49	34	0.72
3	Accounts and Ship Compressor	397	47.7	29.7	0.9
4	Moulding Heavy line	395	47.8	28	0.83
5	DTA Moulding 2	392	316	177	0.85
6	DTA Finishing and Redeam	395	176	73	0.65
7	Compressor 500 CFM	397	137	82	0.87
8	EOU New Moulding	397	22.4	10.9	0.35
9	Press Shop	397	112	55	0.76
10	Clutch facing	397	316	202	0.93
11	Power House, Store DTA	426	22.6	16.75	0.72
12	OCV Finishing	427	117	68.5	0.79
13	OCV Basement DB1	427	97	68	0.95
14	OCV Basement Moulding DB2	427	125	78	0.82
15	OCV Lighting	427	11.7	7.2	0.89
16	Main Gate and Boundary Light	427	8.7	4.8	0.75
17	Moulding EOU	429	184	180	0.74
18	Dy 1 & 2	430	27.9	10	0.47
19	Moulding 3	431	120	78	0.86
20	4 Wheeler	434	41	22	0.68
21	Moulding 1	434	115	82	0.93

© Confederation of Indian Industry

Sr. No.	Section Description	Power Factor	Power	KVAR Required
			kW	
1	Transformer 1250 KVA			250
2	Transformer 800 KVA			250
3	Bonding and Tool Room	0.74	117	125
4	DTA Moulding 2	0.85	177	125
5	DTA Finishing and Redeam	0.65	97	125
6	Clutch facing	0.93	202	100
7	OCV Finishing	0.79	68.5	100
8	OCV Basement Moulding DB2	0.82	78	100
9	Moulding EOU	0.74	180	150

Power Capacitors

- Capacitor banks install to improve power factor
 Reasons for failure
 - > Ageing
 - Input voltage and frequency fluctuation
 - > Harmonics present in the system
 - > Temperature around the bank
 - Poor quality capacitors use in the construction



Power Capacitors

Power Capacitors

IMPROVE OVERALL POWER FACTOR OF PLANT TO 0.99

Savings = Rs. 8.87 Lakhs + Rs. 12.69= Rs. 21.56 Lakhs

Annual Saving Investment Pay Back

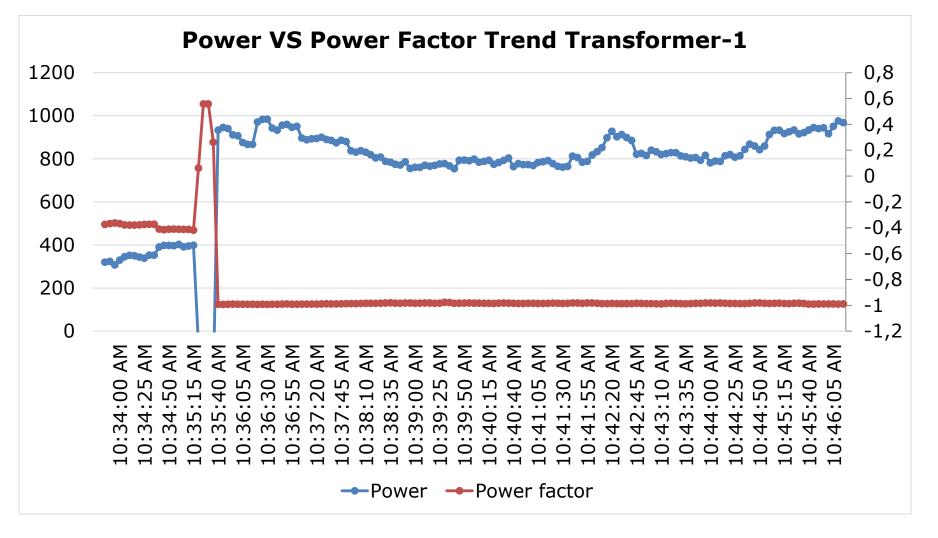
- Rs 21.56 Lakhs

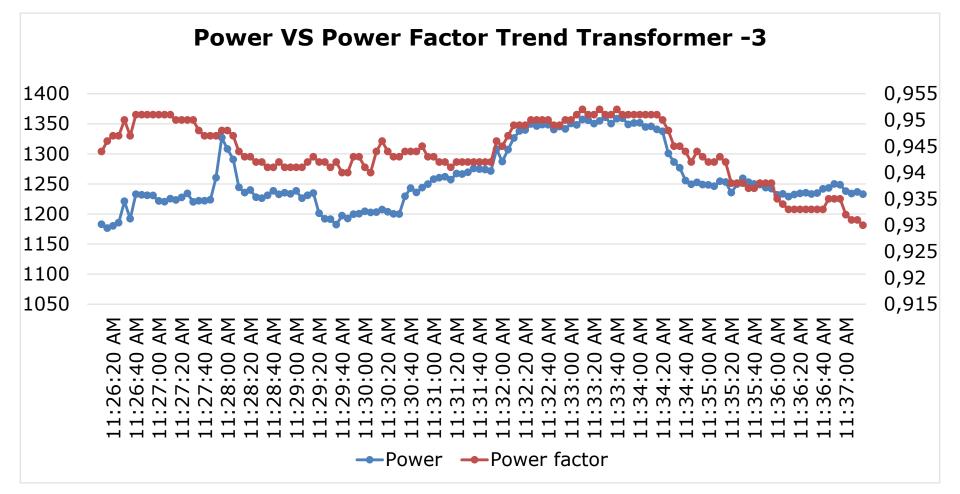
- Rs 12.00 Lakhs
- 7 Months

Capacitor Selection

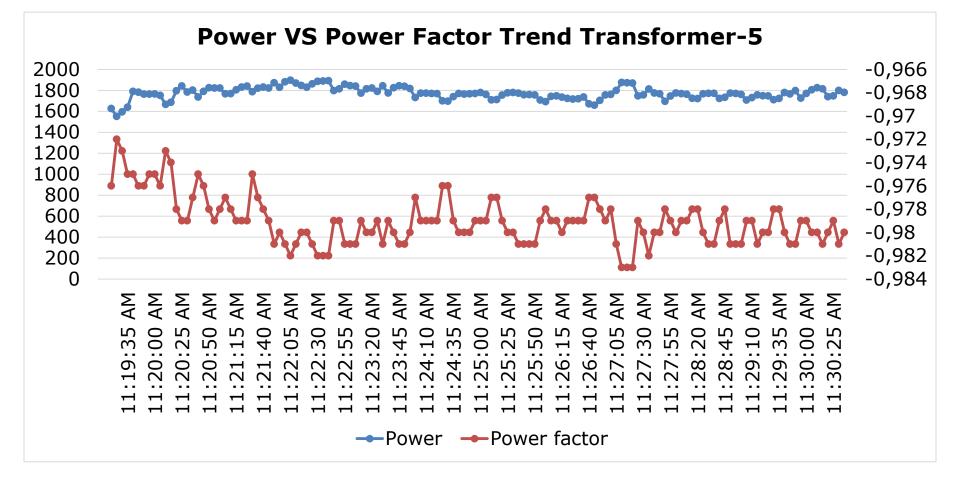
- v Chart Method
- v Formula Method
 - Capacitor required (KVAr)
 - **= kW x {Tan cos-1**Φ1 **Tan cos-1**Φ2 **}**
 - **Cos** Φ **1 Present power factor**
 - **Cos** Φ **2 Desired power factor**

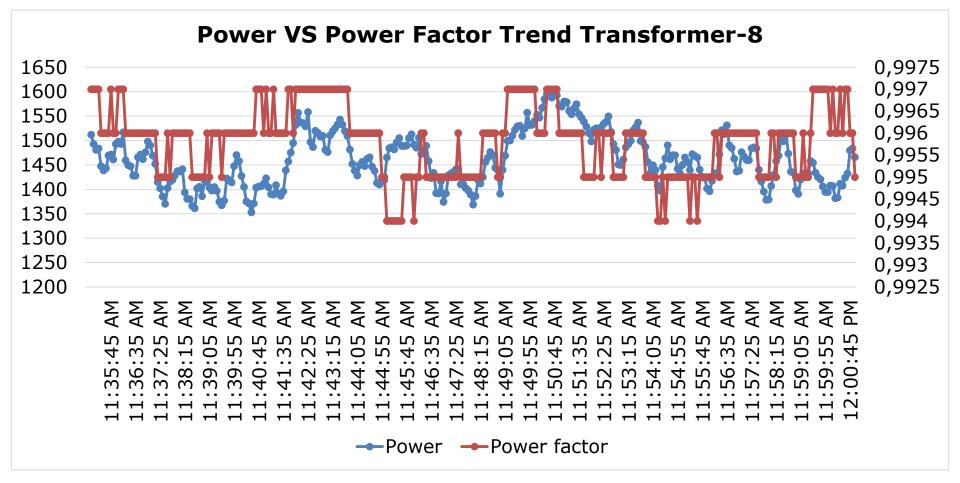
TABLE 1.2 MULTIPLIERS TO DETERMINE CAPACITOR kVAr REQUIREMENTS FOR POWER FACTOR CORRECTION

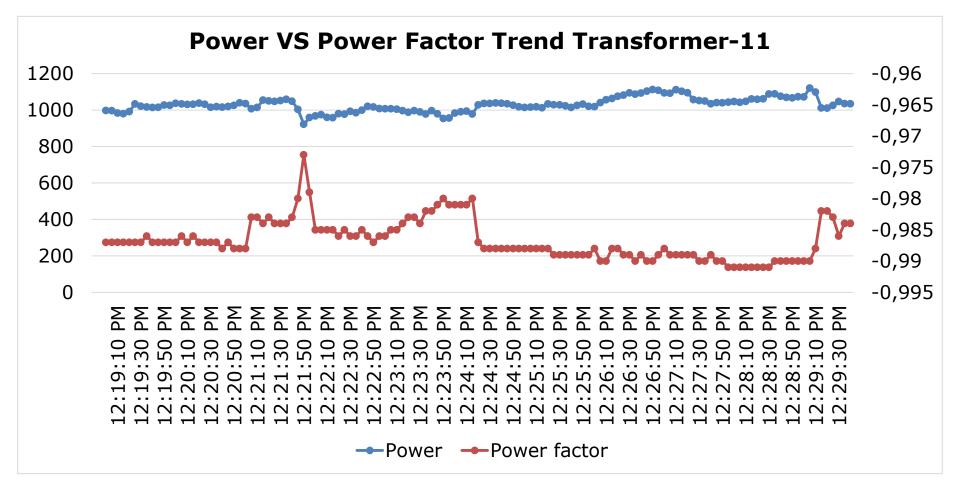

Orig- inal	I								Desir	ed Po	wer F	actor	•								
Power Factor		0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.0
0.50																				1.589	
0.51 0.52 0.53 0.54 0.55	0.893 0.850 0.809	0.919 0.876 0.835	0.945 0.902 0.861	0.971 0.928 0.887	0.997 0.954 0.913	1.023 0.980 0.939	1.050 1.007 0.966	1.076 1.033 0.992	1.103 1.060 1.019	1.131 1.088 1.047	1.159 1.116 1.075	1.187 1.144 1.103	1.217 1.174 1.133	1.248 1.205 1.164	1.280 1.237 1.196	1.314 1.271 1.230	1.351 1.308 1.267	1.392 1.349 1.308	1.440 1.397 1.356	1.544 1.500 1.457 1.416 1.376	1.643 1.600 1.559
0.56 0.57 0.58 0.59 0.60	0.692 0.655 0.619	0.718 0.681 0.645	0.744 0.707 0.671	0.770 0.733 0.697	0.796 0.759 0.723	0.822 0.785 0.749	0.849 0.812 0.776	0.875 0.838 0.802	0.902 0.865 0.829	0.930 0.893 0.857	0.958 0.921 0.885	0.986 0.949 0.913	1.016 0.979 0.943	1.047 1.010 0.974	1.079 1.042 1.006	1.113 1.076 1.040	1.150 1.113 1.077	1.191 1.154 1.118	1.239 1.202 1.166	1.337 1.299 1.262 1.226 1.190	1.442 1.405 1.369
0.61 0.62 0.63 0.64 0.65	0.516 0.483 0.451	0.542 0.509 0.474	0.568 0.535 0.503	0.594 0.561 0.529	0.620 0.587 0.555	0.646 0.613 0.581	0.673 0.640 0.608	0.699 0.666 0.634	0.726 0.693 0.661	0.754 0.721 0.689	0.782 0.749 0.717	0.810 0.777 0.745	0.840 0.807 0.775	0.871 0.838 0.806	0.903 0.870 0.838	0.937 0.904 0.872	0.974 0.941 0.909	1.015 0.982 0.950	1.063 1.030 0.998	1.156 1.123 1.090 1.068 1.026	1.266 1.233 1.201
0.66 0.67 0.68 0.69 0.70	0.358 0.328 0.299	0.384 0.354 0.325	0.410 0.380 0.351	0.436 0.406 0.377	0.462 0.432 0.403	0.488 0.458 0.429	0.515 0.485 0.456	0.541 0.511 0.482	0.568 0.538 0.509	0.596 0.566 0.537	0.624 0.594 0.565	0.652 0.622 0.593	0.682 0.652 0.623	0.713 0.683 0.654	0.745 0.715 0.686	0.779 0.749 0.720	0.816 0.786 0.757	0.857 0.827 0.798	0.905 0.875 0.846	0.995 0.965 0.935 0.906 0.877	1.108 1.078 1.049
0.71 0.72 0.73 0.74 0.75	0.214 0.186 0.159	0.240 0.212 0.185	0.266 0.238 0.211	0.292 0.264 0.237	0.318 0.290 0.263	0.344 0.316 0.289	0.371 0.343 0.316	0.397 0.369 0.342	0.424 0.396 0.369	0.452 0.424 0.397	0.480 0.452 0.425	0.508 0.480 0.453	0.538 0.510 0.483	0.569 0.541 0.514	0.601 0.573 0.546	0.635 0.607 0.580	0.672 0.644 0.617	0.713 0.685 0.658	0.761 0.733 0.706	0.849 0.821 0.793 0.766 0.739	0.964 0.936 0.909
0.76 0.77 0.78 0.79 0.80	0.079 0.052 0.026	0.105 0.078 0.052	0.131 0.104 0.078	0.157 0.130 0.104	0.183 0.156 0.130	0.209 0.182 0.156	0.236 0.209 0.183	0.262 0.235 0.209	0.289 0.262 0.236	0.317 0.290 0.264	0.345 0.318 0.292	0.373 0.346 0.320	0.403 0.376 0.350	0.434 0.407 0.381	0.466 0.439 0.413	0.500 0.473 0.447	0.537 0.510 0.484	0.578 0.551 0.525	0.626 0.599 0.573	0.712 0.685 0.659 0.633 0.609	0.829 0.802 0.776
0.81 0.82 0.83 0.84 0.85				0.026	0.052 0.026	0.078 0.052 0.026	0.105 0.079 0.053	0.131 0.105 0.079	0.158 0.132 0.106	0.186 0.160 0.134	0.214 0.188 0.162	0.242 0.216 0.190	0.272 0.246 0.220	0.303 0.277 0.251	0.335 0.309 0.283	0.369 0.343 0.317	0.406 0.380 0.354	0.447 0.421 0.395	0.495 0.469 0.443	0.581 0.555 0.529 0.503 0.477	0.698 0.672 0.646
0.86 0.87 0.88 0.89 0.90								0.000	0.027	0.055 0.028 0.000	0.083 0.056 0.028	0.111 0.084 0.056	0.141 0.114 0.086	0.172 0.145 0.117	0.204 0.177 0.149	0.238 0.211 0.183	0.275 0.248 0.220	0.316 0.289 0.261	0.364 0.337 0.309	0.450 0.424 0.397 0.369 0.341	0.567 0.540 0.512
0.91 0.92 0.93 0.94 0.95													0.000	0.031	0.063 0.032 0.000	0.097 0.066 0.034	0.134 0.103 0.071	0.175 0.144 0.112	0.223 0.192 0.160	0.313 0.283 0.252 0.220 0.186	0.426 0.395 0.363
0.96 0.97 0.98 0.99																		0.000	0.048	0.149 0.108 0.060 0.000	0.251 0.203

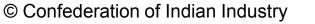

Power Factor Study of Plant

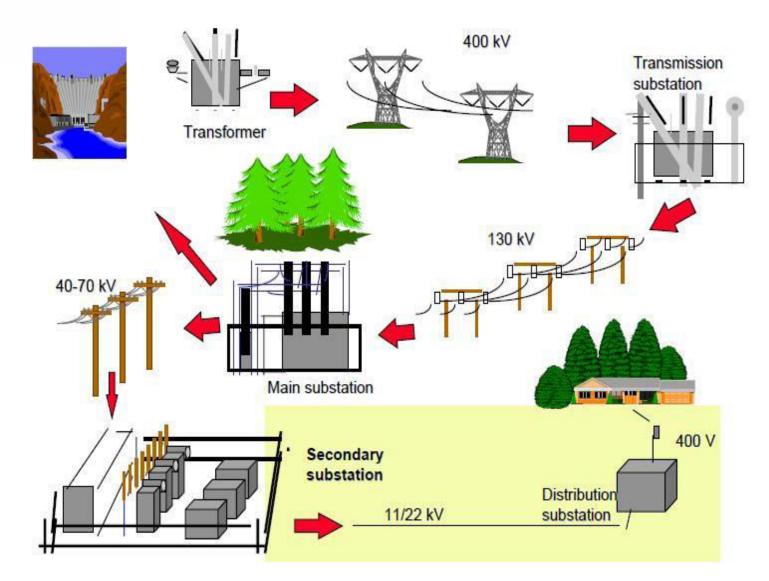
- Electrical Distribution system studied –
- Billing analysis done for last 1 Year
- Average power factor 0.998











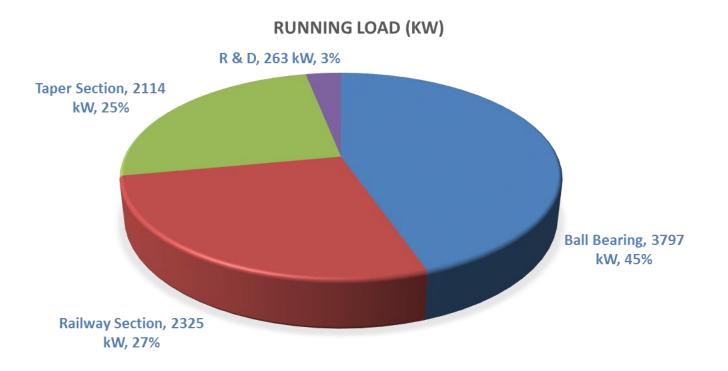
Thank you pankaj.dhote@cii.in 9685613238

Electrical System

© Confederation of Indian Industry

Agenda

- > Introduction Electrical System
- > Major Components
- > Electrical System Audit
- > Preventive Maintenance benefits
- Role of LSPs


Major Activities

Major activities

- Bill Analysis
- Motor Loading Analysis
- Voltage Drop Study
- Power Factor Analysis
- Thermal Imaging
 - Power Quality / Harmonics Analysis
 - Capacitor Health Check up
 - Earthing / Lux Level
 - Idle Operation

Load Distribution of Plant

Transformer

Transformer

> Heart of Electrical Distribution

Category

- Power Transformers
- > Distribution Transformers

Loss in Transformer

- Efficient Transformer 1% loss
 - > Substantial at higher ratings
- Losses contributed by
 - Core No load loss
 - Copper Loss Depends on load

How to Calculate Running Losses

Total losses = No load losses + full load losses x (%age of transformer loading)2

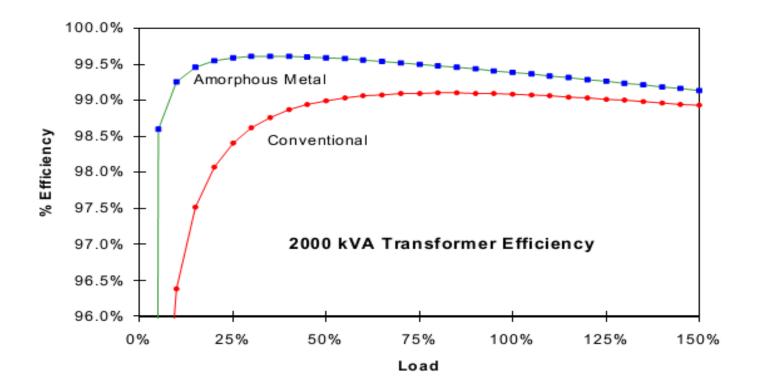
- Rating
- Loading
- Loading in %age
- **No Load Losses**
- **Full Load Losses**
- Total Losses

- = 2000 kVA
- = 1400 kVA
- = 70 %
- = **3.4** kW
- = 24 kW
- $= 3.4 + 24 (0.7 \times 0.7)$
- = 15.36 kW

Estimation of Losses

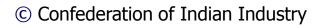
Efficiency >>>98-99 %

- Loss in 1 Transformer = 15.36 kW
- > Operational Hours = 8500 Hrs/Yr.
- Power Cost = Rs. 7.0/ Unit
- Cost of Losses = 15.36 x 8500 x 7
 - 13.30 X 8500 X /
 - = Rs. 9.15 Lakhs/Yr.


LATEST STANDARD DISTRIBUTION TRANSFORMERS 1180-1 (2014)

© Confederation of Indian Industry

Transformer efficiency


TRANSFORMER EFFICIENCY

MAXIMUM TOTAL LOSSES & IMPEDANCE VALUES UPTO 11 kV CLASS TRANSFORMERS

			Cla	uses (7.8.1	l .1)							
	Rating	Impedance	Max. Total Loss (W)									
S.No	(kVA)	(percent)	Energy Eff	ficiency	Energy 1	Efficiency	Energy Efficiency Level 3					
			Level	1	Lev	vel 2						
			50 % Load	100 %	50 %	100 %	50 %	100 %				
			30 70 Luau	Load	Load	Load	Load	Load				
i	250	4.5	1050	3150	980	2930	920	2700				
ii	315	4.5	1100	3275	1025	3100	955	2750				
iii	400	4.5	1300	3875	1225	3450	1150	3330				
iv	500	4.5	1600	4750	1510	4300	1430	4100				
V	630	4.5	2000	5855	1860	5300	1745	4850				
vi	1000	5	3000	9000	2790	7700	2620	7000				
vii	1250	5	3600	10750	3300	9200	3220	8400				
viii	1600	6.25	4500	13500	4200	11800	3970	11300				
ix	2000	6.25	5400	17000	5050	15000	4790	14100				
Х	2500	6.25	6500	20000	6150	18500	5900	17500				

MAXIMUM TOTAL LOSSES & IMPEDANCE VALUES UPTO 11 kV CLASS TRANSFORMERS

S.No	Rating	Energy I	Efficiency	Energy I	Efficiency	Energy Efficiency			
	(kVA)	Lev	vel 1	Lev	vel 2	Level 3			
		50 % Load	100 % Load	50 % Load	100 % Load	50 % Load	100 % Load		
i	250	99.58 %	98.74 %	99.61 %	98.83 %	99.63 %	98.92 %		
ii	315	99.65 %	98.96 %	99.67 %	99.02 %	99.70 %	99.13 %		
iii	400	99.68 %	99.03 %	99.69 %	99.14 %	99.71 %	99.17 %		
iv	500	99.68 %	99.05 %	99.70 %	99.14 %	99.71 %	99.18 %		
v	630	99.68 %	99.07 %	99.70 %	99.16 %	99.72 %	99.23 %		
vi	1000	99.70 %	99.10 %	99.72 %	99.23 %	99.74 %	99.30 %		
vii	1250	99.71 %	99.14 %	99.74 %	99.26 %	99.74 %	99.33 %		
viii	1600	99.72 %	99.16 %	99.74 %	99.26 %	99.75 %	99.29 %		
ix	2000	99.73 %	99.15 %	99.75 %	99.25 %	99.76 %	99.30 %		
X	2500	99.74 %	99.20 %	99.75 %	99.26 %	99.76 %	99.30 %		

© Confederation of Indian Industry

Name Plate

	DISTRIBUTION TRANSFORMER							
		CROMPTO	N GREAVES LIMITED					
	3	PHASE TRANSFORMER	ENERGY EFFICIENCY LEVEL	Г	1			
STANDARD		IS 1180 (PART 1)		-				
KVA		2500	MAX. TOTAL LOSSES AT 50% RATED LOAD	w	6500			
VOLTS AT	ſ	HV 11000	MAX, TOTAL LOSSES AT 100% RATED LOAD	w	20000			
NO LOAD	l	LV 433		_				
	٢	HV 75 kVp / 28 kVrms	TYPE OF COOLING		ONAN			
BIL	Į	11 / / J KUP / 20 KUNIS	OIL °C	F	40			

C Confederation of Indian Industry

Case study (New Installation)

Distribution transformer 2500 kVA % Age impedance 6.25% Case 1 No load losses 3.8 kW Load losses 28.0 kW Case 2 (Level 1 : IS 1180) No load losses 2.0 kW Load losses 18.0 kW

Case study

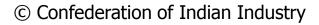
- **Consider Loading on transformer is 80 %**
- Total losses = No load losses + full load losses x (%age of transformer loading)2
- Case 1
- Total Losses = 3.8 + 28 (0.8 x 0.8) = 21.72 kW
- Case 2
- Total Losses = 2.0 + 18 (0.8 x 0.8) = 13.53 kW

Total Savings = 21.71 - 13.52 = 8.2 kWOperational Hours = 8500 hoursTotal Energy saving = $8500 \times 8.2 = 69700 \text{ Units}$ Unit Rate = Rs. 7.5 Per Unit Savings = $69700 \times 7.5 = \text{Rs.} 5.22 \text{ Lacs Per Annum}$

Case study

- Cost of Transformer with High Loss = 16 lacs (Approx)
- **Cost of Transformer with Low Loss** = 26 lacs (Approx)
- **Extra Capital Amount**
- Savings
- Simple Payback Period
- Life of Distribution Transformer
- **Total savings for Life**

- - = 10 lacs
 - = 5.2 lacs/annum
 - = 2 Years
 - = 25 Years
 - = 120 Lacs


Maintenance Schedule (Hourly)

- > Ambient Temperature
- Winding Temperature
- ➢ Oil Temperature
- Loading in kVA, Amperes
- Voltage Level (HV /LV)

Maintenance Schedule (Daily)

- > Oil Level in Transformer
 - ✓ Bushings
 - ✓ OLTC
 - ✓ Conservator
- Condition of Breather
- Diaphragm of Explosion Vent
- Cooling fan status

Maintenance Schedule (Quarterly)

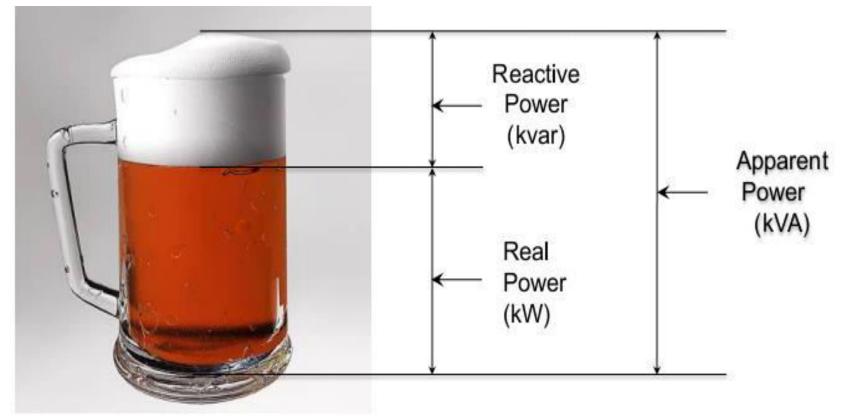
- >Oil Dielectric Strength (>40 kV)
 - ✓ BDV
 - ✓ Water Content
- Condition of Bushings
- Dehydration of Oil if required

Maintenance Schedule (Half Yearly)

- >Oil Dielectric Strength (>40 kV)
 - ✓ BDV
 - ✓ Water Content
- DGA Test (Dissolved Gas Analysis)
- OLTC Operation checking
- Dehydration of Oil if required

Maintenance Schedule (Yearly)

- >Oil Dielectric Strength (>40 kV)
 - ✓ BDV
 - ✓ Water Content
 - ✓ DGA Test (Dissolved Gas Analysis)
- OLTC Operation checking
- Condition of Bushings
- Dehydration of Oil

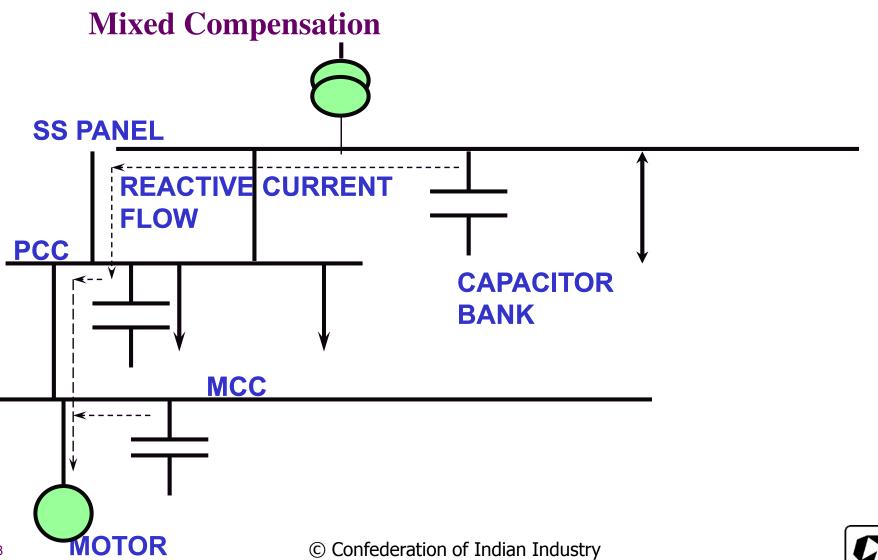

Maintenance Schedule (Yearly)

- Checking of all Nut & Bolts
- Gasket Joints
- Cable/Bus bar Boxes
- Relay/alarm Circuits
- ➢ Painting
- Sludge Checking
- > Wash Core with Oil if sludge is more


Analogy

Power factor = $\underline{kW} = \underline{kW} = \underline{Beer}$ KVA $\underline{kW} + KVAr$ Beer + Foam




PF COMPENSATION

PF COMPENSATION

PF COMPENSATION

Electricity Tariff Details

Punjab State Revised

Punjab State is having Single Discom

Punjab State Power Corporation Limited Billing is in kVAh

Billing Structure		Fixed Charges (₹)	Energy Charges (₹)
General Industry	Above 100 kVA & upto 1000 kVA	140/kVA	5.70/kVAh
	Above 100 kVA & upto 2500 kVA	195/kVA	5.74/kVAh
	Above 2500 KVA	230/kVA	5.78/kVAh
PIU / ARC	Above 100 kVA & upto 1000 kVA	160/kVA	5.74/kVAh
Furnace	Above 1000 KVA	295/kVA	5.98/kVAh
Bulk Supply	LT	155/kVA	6.25/kVAh
Bulk Supply	HT	195/kVA	5.85/kVAh

Punjab State Revised

Voltage Rebate

Rebate of 30 paise/kVAh to all consumers getting supply at 400/220/132 kV, 25 paise/kVAh to all consumers getting supply at 66/33 kV, 20 paise/kVAh to DS, NRS & MS consumers getting supply at 11 kV

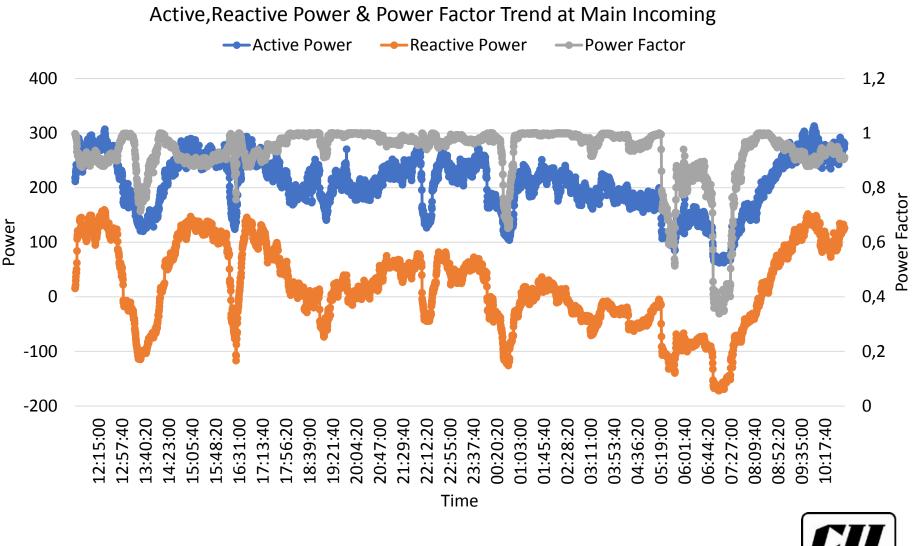
Bill Analysis

Present System

- Bill analysis done in detail
- Power factor, MDI, Energy consumption, studied in detail
- Present Billing is in kVAh
- Present CD 400 kVA

Bill Analysis Power Factor

Month	Energy Consumption kVAh	Energy Consumption kWh	Power Factor	Energy charges in Rs.	Monthly E Bill Rs.	P.F Unit Cost Rs.
Jan-17	123268	116184	0.943	706746	846760	5.7
Feb-17	110308	104639	0.949	635074	760890	5.8
Mar-17	118743	111194	0.936	678301	812730	5.7
Apr-17	141689	131209	0.926	812238	939330	5.7
May-17	145736	134312	0.922	834454	1011619	5.7
Jun-17	166454	152546	0.916	956093	1162370	5.7
Jul-17	145121	133649	0.921	922256	1116900	6.4
Aug-17	158618	143177	0.903	1004051	1206280	6.3
Sep-17	173950	154323	0.887	1099847	1349100	6.3
Oct-17	183444	158524	0.864	1165479	1436280	6.4
Nov-17	185735	163825	0.882	1069120	1310929	5.8
Dec-17	160515	146277	0.911	990189	1199910	6.2
	1813581	1649859	0.913	10873848	13153098	6.0



Bill Analysis

Month	Contract Demand in kVA	Actual Demand in kVA	Fine Demand charges in RS	Rs/kVA	Monthly Bill	unit Cost
Jan-17	400	321		0	846760	6.87
Feb-17	400	351		0	760890	6.90
Mar-17	400	364		0	812730	6.84
Apr-17	400	394		0	939330	6.63
May-17	400	405.36	4020	750	1011619	6.94
Jun-17	400	422.76	17070	750	1162370	6.98
Jul-17	400	418.2	13650	750	1116900	7.70
Aug-17	400	428.04	21030	750	1206280	7.60
Sep-17	400	467.76	50820	750	1349100	7.76
Oct-17	400	480.73	60540	750	1436280	7.83
Nov-17	400	465.1	48840	750	1310929	7.06
Dec-17	400	441.36	31020	750	1199910	7.48
			246990		13153098	7.22

Analysis of Electrical Parameters on Main Incoming

Capacitor Bank

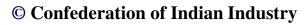
	Capacitor Bank Health Check-up										
Name	Rated kVAR	Actual kVAr	Measured								
	440 Volts	396 kVAr	R	Y	В	Measured kVAr					
1	25	21.7	31.1	30.5	31.4	21.51					
2	25	21.7	30.7	31.5	31.3	21.62					
3	10	8.7	0.8	4.5	0.0	1.23					
4	20	17.4	24.1	25.2	24.7	17.11					
5	20	17.4	24.5	25.4	24.2	17.13					
6	25	21.7	31.3	31.3	30.3	21.48					
7	10	8.7	0.0	0.0	0.0	0.00					
8	25	21.7	31.7	24.1	23.6	18.36					
9	25	21.7	54.5	23.1	30.7	-					

Improve Overall Power factor of Plant

Concern Point

- No APFC panel is Installed
- Capacitors are manually connected
- No Control on reactive power supply
- Connected Capacitors are not sufficient to maintain unity power factor

Improve Overall Power factor of Plant


Action Plan

- Install new APFC of 400 kVAr
- isolate Manual Capacitors
- Maintain Unity Power Factor at SEB Meter
- Install MDI Controller and maintain MDI at 395 kVA
- Shut of Non critical load if MDI crosses 395 kVA

Saving Potential

Month	Energy Consumption kVAh	Energy Consumption kWh	Power Factor	Energy charges	Monthly Bill	P.F Unit Cost	Saving Potential
Jan-17	123268	116184	0.943	706746	846760	5.7	40615
Feb-17	110308	104639	0.949	635074	760890	5.8	32638
Mar-17	118743	111194	0.936	678301	812730	5.7	43122
Apr-17	141689	131209	0.926	812238	939330	5.7	60077
May-17	145736	134312	0.922	834454	1011619	5.7	65411
Jun-17	166454	152546	0.916	956093	1162370	5.7	79886
Jul-17	145121	133649	0.921	922256	1116900	6.4	72906
Aug-17	158618	143177	0.903	1004051	1206280	6.3	97741
Sep-17	173950	154323	0.887	1099847	1349100	6.3	124097
Oct-17	183444	158524	0.864	1165479	1436280	6.4	158325
Nov-17	185735	163825	0.882	1069120	1310929	5.8	126117
Dec-17	160515	146277	0.911	990189	1199910	6.2	87832
	1813581	1649859	0.9133	10873848	13153098	6.0	9.89

CII

Improve Overall Power factor of Plant

Annual Savings Investment Payback

- Rs 12.35 Lakhs
- Rs 4.0 Lakhs
- 4 Months

Capacitor Selection

- Chart Method
- Formula Method
 - Capacitor required (KVAr)
 - = kW x {Tan cos-101 Tan cos-102 }
 - **Cos** Φ **1 Present power factor**

TABLE 1.2 MULTIPLIERS TO DETERMINE CAPACITOR kVAr REQUIREMENTS FOR POWER FACTOR CORRECTION

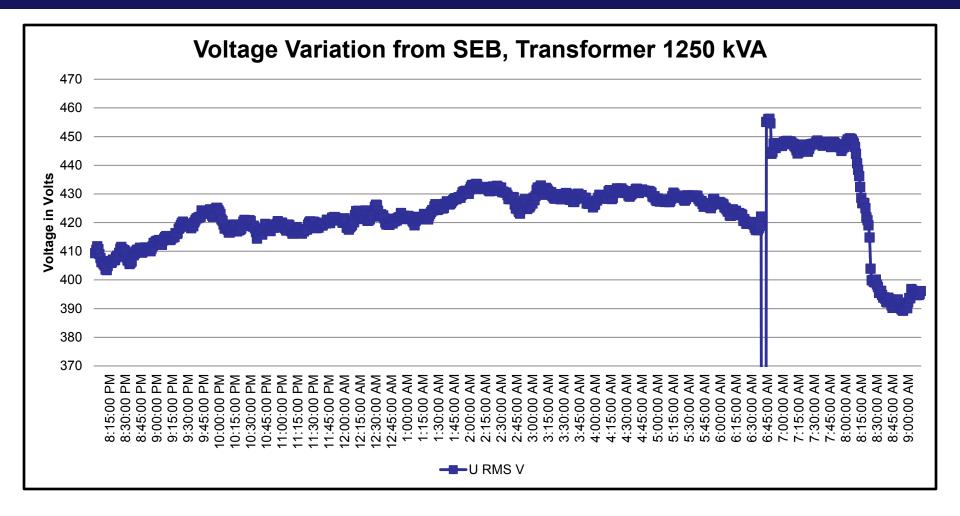
Orig- inal	I								Desir	ed Po	wer F	actor									
Power Factor		0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.0
0.50																				1.589	
0.51 0.52 0.53 0.54 0.55	0.893 0.850 0.809	0.919 0.876 0.835	0.945 0.902 0.861	0.971 0.928 0.887	0.997 0.954 0.913	1.023 0.980 0.939	1.050 1.007 0.966	1.076 1.033 0.992	1.103 1.060 1.019	1.131 1.088 1.047	1.159 1.116 1.075	1.187 1.144 1.103	1.217 1.174 1.133	1.248 1.205 1.164	1.280 1.237 1.196	1.314 1.271 1.230	1.351 1.308 1.267	1.392 1.349 1.308	1.440 1.397 1.356	1.544 1.500 1.457 1.416 1.376	1.643 1.600 1.559
0.56 0.57 0.58 0.59 0.60	0.692 0.655 0.619	0.718 0.681 0.645	0.744 0.707 0.671	0.770 0.733 0.697	0.796 0.759 0.723	0.822 0.785 0.749	0.849 0.812 0.776	0.875 0.838 0.802	0.902 0.865 0.829	0.930 0.893 0.857	0.958 0.921 0.885	0.986 0.949 0.913	1.016 0.979 0.943	1.047 1.010 0.974	1.079 1.042 1.006	1.113 1.076 1.040	1.150 1.113 1.077	1.191 1.154 1.118	1.239 1.202 1.166	1.337 1.299 1.262 1.226 1.190	1.442 1.405 1.369
0.61 0.62 0.63 0.64 0.65	0.516 0.483 0.451	0.542 0.509 0.474	0.568 0.535 0.503	0.594 0.561 0.529	0.620 0.587 0.555	0.646 0.613 0.581	0.673 0.640 0.608	0.699 0.666 0.634	0.726 0.693 0.661	0.754 0.721 0.689	0.782 0.749 0.717	0.810 0.777 0.745	0.840 0.807 0.775	0.871 0.838 0.806	0.903 0.870 0.838	0.937 0.904 0.872	0.974 0.941 0.909	1.015 0.982 0.950	1.063 1.030 0.998	1.156 1.123 1.090 1.068 1.026	1.266 1.233 1.201
0.66 0.67 0.68 0.69 0.70	0.358 0.328 0.299	0.384 0.354 0.325	0.410 0.380 0.351	0.436 0.406 0.377	0.462 0.432 0.403	0.488 0.458 0.429	0.515 0.485 0.456	0.541 0.511 0.482	0.568 0.538 0.509	0.596 0.566 0.537	0.624 0.594 0.565	0.652 0.622 0.593	0.682 0.652 0.623	0.713 0.683 0.654	0.745 0.715 0.686	0.779 0.749 0.720	0.816 0.786 0.757	0.857 0.827 0.798	0.905 0.875 0.846	0.995 0.965 0.935 0.906 0.877	1.108 1.078 1.049
0.71 0.72 0.73 0.74 0.75	0.214 0.186 0.159	0.240 0.212 0.185	0.266 0.238 0.211	0.292 0.264 0.237	0.318 0.290 0.263	0.344 0.316 0.289	0.371 0.343 0.316	0.397 0.369 0.342	0.424 0.396 0.369	0.452 0.424 0.397	0.480 0.452 0.425	0.508 0.480 0.453	0.538 0.510 0.483	0.569 0.541 0.514	0.601 0.573 0.546	0.635 0.607 0.580	0.672 0.644 0.617	0.713 0.685 0.658	0.761 0.733 0.706	0.849 0.821 0.793 0.766 0.739	0.964 0.936 0.909
0.76 0.77 0.78 0.79 0.80	0.079 0.052 0.026	0.105 0.078 0.052	0.131 0.104 0.078	0.157 0.130 0.104	0.183 0.156 0.130	0.209 0.182 0.156	0.236 0.209 0.183	0.262 0.235 0.209	0.289 0.262 0.236	0.317 0.290 0.264	0.345 0.318 0.292	0.373 0.346 0.320	0.403 0.376 0.350	0.434 0.407 0.381	0.466 0.439 0.413	0.500 0.473 0.447	0.537 0.510 0.484	0.578 0.551 0.525	0.626 0.599 0.573	0.712 0.685 0.659 0.633 0.609	0.829 0.802 0.776
0.81 0.82 0.83 0.84 0.85				0.026	0.052 0.026	0.078 0.052 0.026	0.105 0.079 0.053	0.131 0.105 0.079	0.158 0.132 0.106	0.186 0.160 0.134	0.214 0.188 0.162	0.242 0.216 0.190	0.272 0.246 0.220	0.303 0.277 0.251	0.335 0.309 0.283	0.369 0.343 0.317	0.406 0.380 0.354	0.447 0.421 0.395	0.495 0.469 0.443	0.581 0.555 0.529 0.503 0.477	0.698 0.672 0.646
0.86 0.87 0.88 0.89 0.90							0.000	0.000	0.027	0.055 0.028 0.000	0.083 0.056 0.028	0.111 0.084 0.056	0.141 0.114 0.086	0.172 0.145 0.117	0.204 0.177 0.149	0.238 0.211 0.183	0.275 0.248 0.220	0.316 0.289 0.261	0.364 0.337 0.309	0.450 0.424 0.397 0.369 0.341	0.567 0.540 0.512
0.91 0.92 0.93 0.94 0.95													0.000	0.031	0.063 0.032 0.000	0.097 0.066 0.034	0.134 0.103 0.071	0.175 0.144 0.112	0.223 0.192 0.160	0.313 0.283 0.252 0.220 0.186	0.426 0.395 0.363
0.96 0.97 0.98 0.99																		0.000	0.048	0.149 0.108 0.060 0.000	0.251 0.203

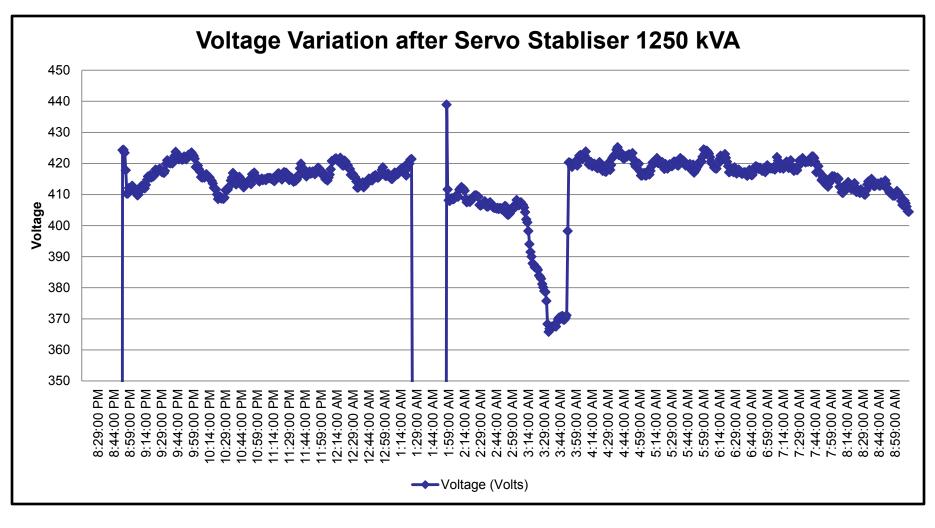
Power Capacitors

- Capacitor banks install to improve power factor
 Reasons for failure
 - > Ageing
 - Input voltage and frequency fluctuation
 - > Harmonics present in the system
 - Temperature around the bank
 - Poor quality capacitors use in the construction

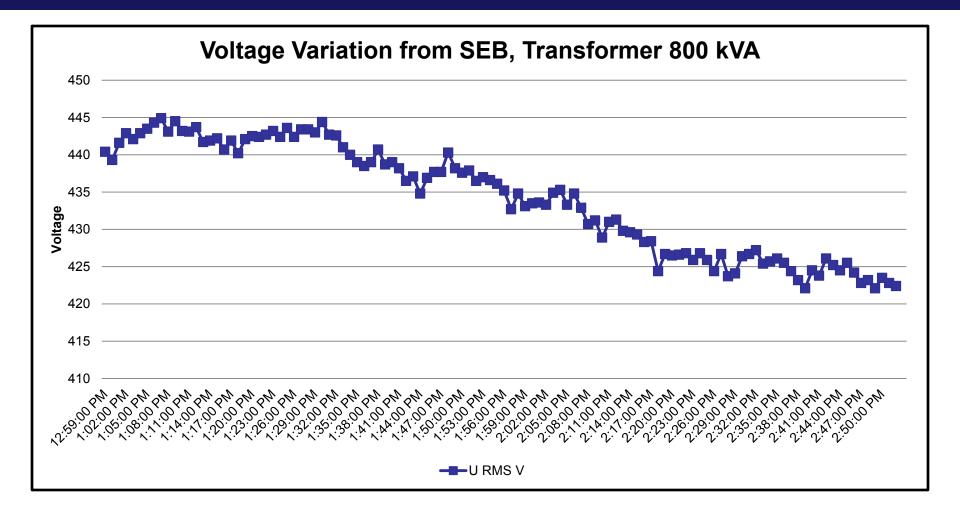


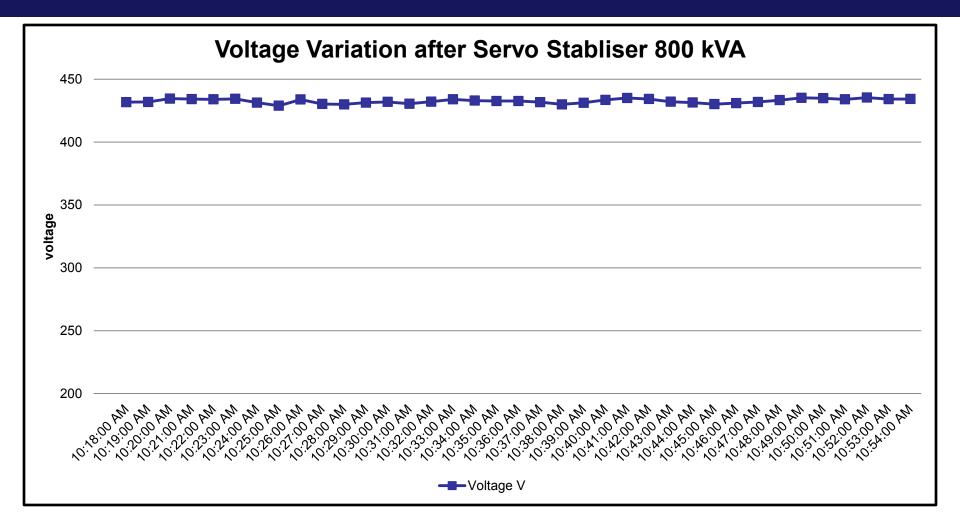
Power Capacitors


Power Capacitors



- Transformer 1250 kVA and 800 kVA, with Off Load Tap Changer
- Both Transformers are installed with Servo -Stabilizers
- Voltage pattern analyzed
 - Data Logger installed on plant transformer and servo stabilizers
 – recordings done





- > All motors are rated for 415 V, with a \pm 10% tolerance
- Voltage fluctuations very high threat to the operation / life of the plant equipments -
- ➢ Plant motors also loaded between 40 − 70 %
- Except Dust Collectors, Compressors

- 1250 kVA Servo Stabliser is not working, giving same output as input
- > 800 kVA voltage setting at very high 430 volts
- Some Cable sizes and bus bars sizes are under sized
- Voltage drop 5-6 volts from transformer to panel

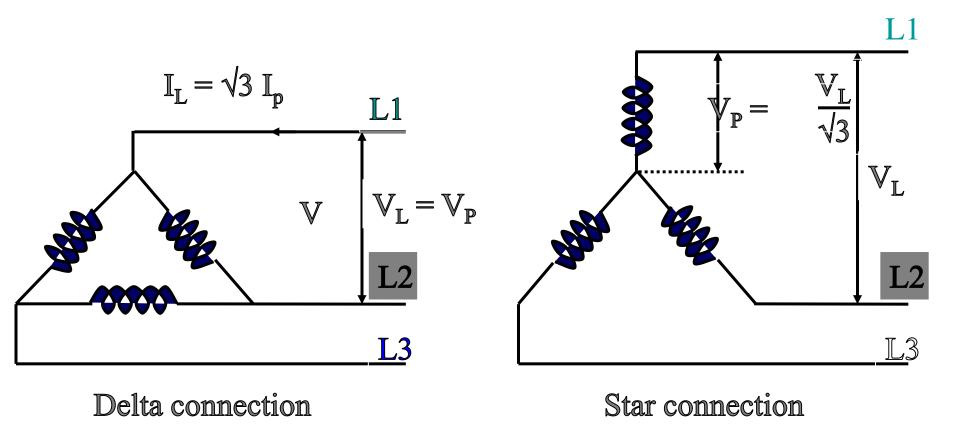
- Annual Bill 4.5 crores
- Present Voltage level 390 450 V
- Recommend to optimize the voltage to 410 V.
- > Annual Savings : @ 1% : 4.5 lakhs

Already implemented during the audit in EOU section

Annual Saving	- Rs 4.50 Lakhs
Investment	- Nil

MOTOR LOSSES

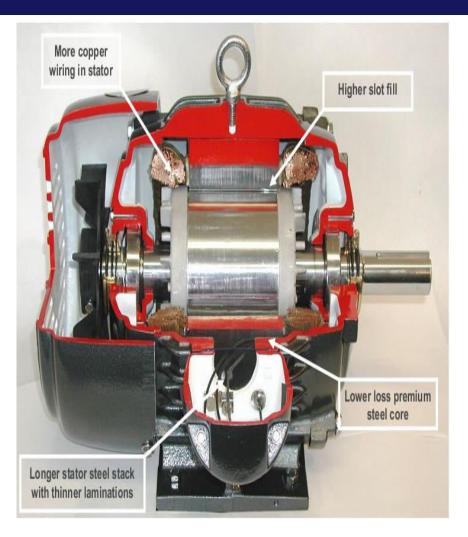
Stator I ² R (W _s) Losses	Core (W _c) Losses	/ Wind	ion and lage) losses				
		\mathcal{T}		Losses		2 pole average	4 pole average
	HAN	144	Losses in Electrical	I ² Rlosses	in Stator - Wous	26%	34%
	178 / 21	At an	Components		in Rotor - W _{QuR}	19%	21%
200			Losses in Magnetic Components	Core losses	Hysteresis Loss	19%	21%
6 40				(W _{Fe})	Eddy Current Loss	1970	2170
	1	NSCH	Losses in Mechanical Components	Mechanical Losses	Frictional Losses W _{Fr}	25%	1000
		3			Windage Losses - W _{Wind}		10%
	1		Losses due to asymmetrcal and leakage fluxes	Stray load losses (WI)		11%	14%
Rotor I ² R (W _r) Losses	And a second sec	/ Load losses	3				

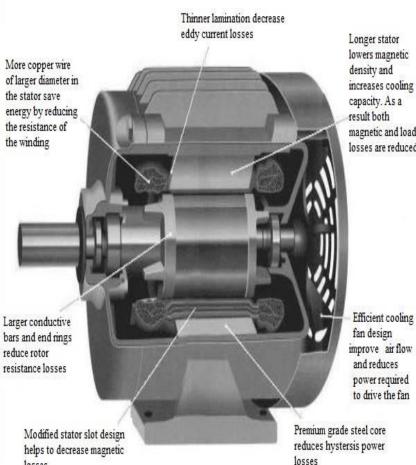


WHY MOTORS ARE BECOMING LESS EFFICIENT

 Over Sized / Under loaded Motors Improper Supply Voltage Use of Less Efficient Motors Poor Power Factor **Rewinding of Motors**

STAR AND DELTA CONNECTION

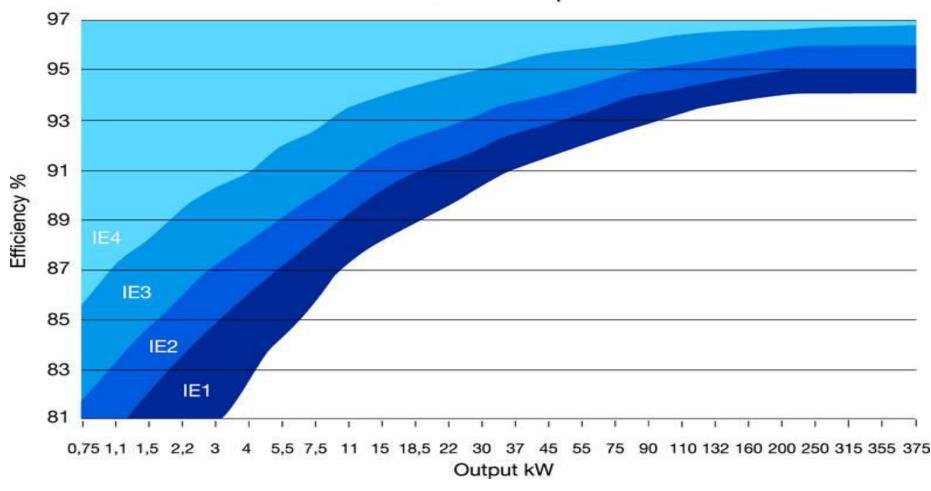



MOTOR LOSSES

the winding

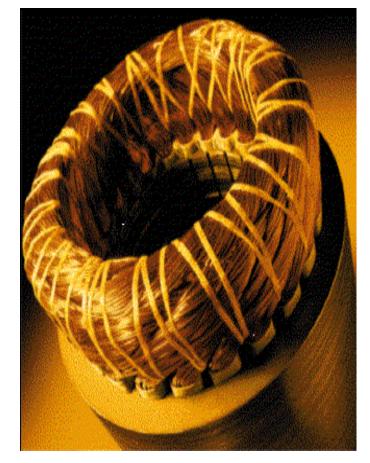
reduce rotor

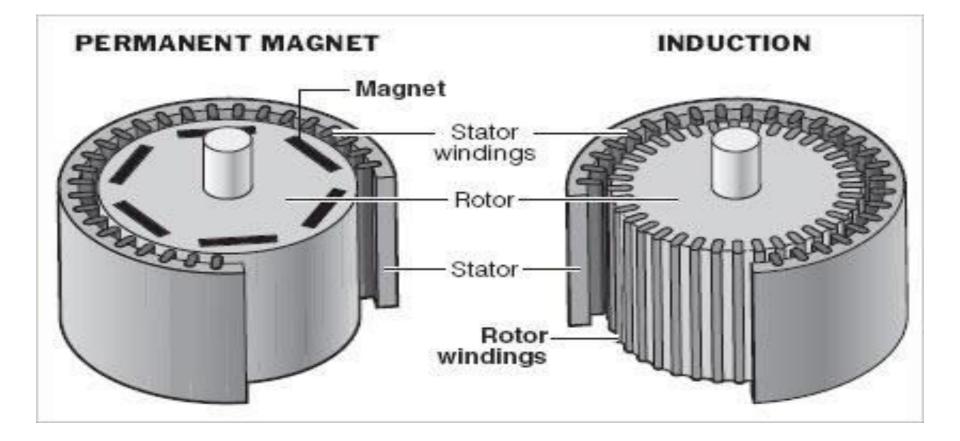
losses

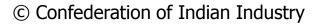

Longer stator lowers magnetic density and increases cooling capacity. As a result both magnetic and load losses are reduced

Premium grade steel core reduces hystersis power

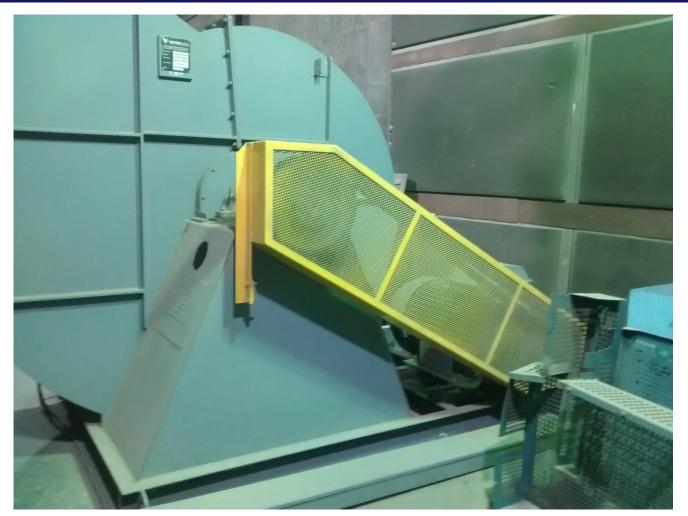
MOTOR EFFICIENCY CLASS


IE Classes - 4 pole


MOTOR REWINDING


- Bearing failure
 - -Rotor scratches stator
 - -Air gap becomes uneven
 - Net torque developed is low
 - Causes drop in efficiency
 - Maximum 5 times motor can undergo rewinding – normal failure

PERMANENT MAGNET SYNCHRONOUS MOTOR


PERMANENT MAGNET SYNCHRONOUS MOTOR

	Permanent Magnet Synchronous Motors (self starting)					Savings using IE4 PMSM over IE2		
S.No.	Frame	kW	Pole	BBL IE4 PMSM Eff %	BBL IE2 Eff %	Energy (kWh) saving/year based on 6000 Hrs running	Rs. Saving/year based on power rate Rs.9 per kWh	
1	112M	2.2	4	89.5	84.3	910	8188	
2	112M	3.0	4	90.4	85.5	1141	10270	
з	112M	3.7	4	90.9	86.3	1302	11716	
4	1325	3.7	4	90.9	86.3	1302	11716	
5	1325	5.5	4	91.9	87.7	1720	15477	
6	132M	7.5	4	92.6	88.7	2137	19230	
7	160M	11.0	4	93.3	89.8	2757	24814	
8	160L	15.0	4	93.9	90.6	3491	31420	
9	180M	18.5	4	94.2	91.2	3876	34885	
10	180L	22.0	4	94.5	91.6	4422	39800	

Belt driven mechanism

- Inefficient method
- Ioss of 7-8% of total operational power
- Motor can be directly coupled to fan to avoid transmission losses

Action Plan

- Couple motor directly with blower
- Save the transmission losses

Direct Driven System

	Name	Measured kW
	Fume Extractor Blower Parkerising	3
	ACP-2 Fume Extractor	9.7
CDDD	ACP-3 Fume Extractor	8.9
CPPR Chrome	ACP-4 Fume Extractor	13.09
emonie	ACP-1 Fume Extractor	3.9
	ID Plant Blower	9.2
	Flue Extractor-EV Plating	6.68
C2D1	Fume Extractor C2D1-1	3.6
C2D1	Fume Extractor C2D1 -2	2.9
	Total	60.97 kW

Saving = 5 % x 60.97 kW x 24 hrs/day x 305 Days x 8.14 Rs/kWh

Annual Saving	- Rs 1.87 Lakhs			
Investment	- Rs 1.00 Lakhs			
Simple Payback	- 7 Months			

Cables

 $\ensuremath{\textcircled{\text{C}}}$ Confederation of Indian Industry

Types of Cables

Types

- > High Voltage (Voltage > 1.1 kV)
- > Low Voltage (Voltage < 1.1 kV)</p>
 - ✓ Control
 - ✓ Instrumentation (Shielded)
 - ✓ Data Cable (Profibus /Lan /Modbus /Fiber/Optics)

Un-avoidable Losses

- Copper Losses I²R (Load losses)
- > Voltage Drop
- > Induction Losses
- > Capacitance
 - Losses

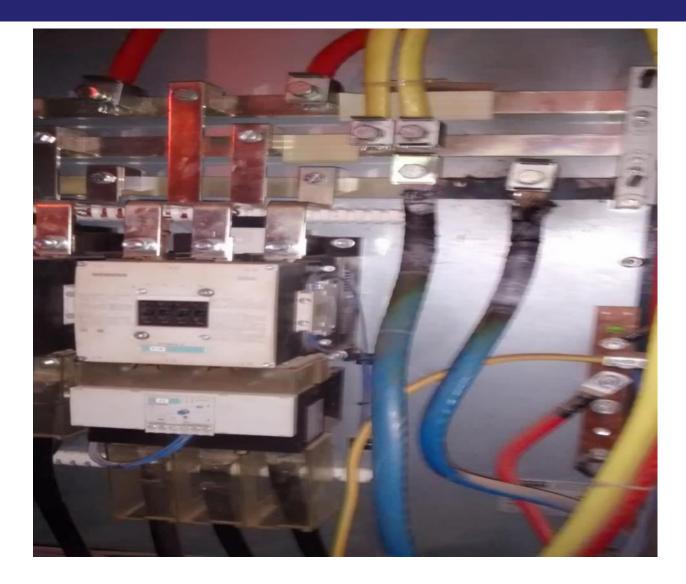
Avoidable Losses

- > Jointing Losses (Heating/Thimble Burning)
- > Bus Bar Connection
- > Thimble losses
- Material change (Copper to Aluminum)

De rating factors

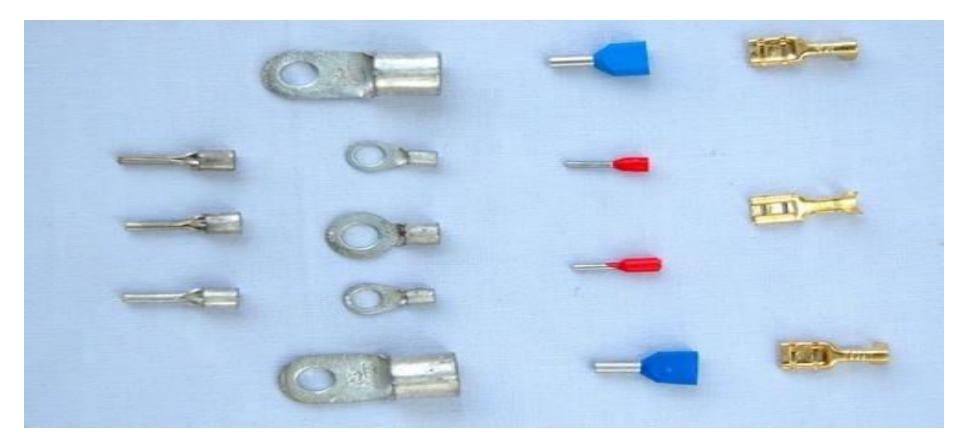
Derating factors for ambient air temperatures other than 30°C. Derating factors for soil temperatures other than 20°C.							
°C	Ambient Temperature Derating Factor			°c	Soil Temperature Derating Factor		
	PVC	EPR / XLPE			PVC	EPR / XLPE	
10	1.22	1.15		10	1.1	1.07	
15	1.17	1.12		15	1.05	1.04	
20	1.12	1.08		20	1	1	
25	1.06	1.04		25	0.95	0.96	
30	1	1		30	0.89	0.93	
35	0.94	0.96		35	0.84	0.89	
40	0.87	0.91		40	0.77	0.85	
45	0.79	0.87		45	0.71	0.8	
50	0.71	0.82		50	0.63	0.76	
55	0.61	0.76		55	0.55	0.71	
60	0.5	0.71		60	0.45	0.65	
65	-	0.65		65	-	0.6	

Losses in Cables due to over heating



Ken Brinkman

Proper tightening of cable is very significant



Losses in Cables due to over heating

Losses due to Wrong Cable Termination

> Use Right type of thimble at Right place

- Case Study 1
- Cable Type
- > Resistance 0.164 ohm/kM
- Current Capacity 280 Amperes
- Losses I2R

- 280 x 280 x 0.164/1000 kW/kM

- 3.5 Core 185 mm2 Al.

- Losses / kM
- Cost / Meter

- 12.86 kW
- Rs. 470/-

- Case Study 1
- Cable Type 3.5 Core 240 mm2 Al.
- > Resistance 0.125 ohm/kM
- Current Capacity 330 Amperes
- Losses I2R

- 330 x 330 x 0.125/1000 kW/kM

- Losses / kM
- Cost / Meter

- 13.61 kW
- Rs. 600/-

- Case Study 1
- Cable Type
- > Resistance 0.125 ohm/kM
- > Current Capacity 330 Amperes
- > Actual Load
- Losses I2R

- 280 Amperes
- 280 x 280 x 0.125/1000 kW/kM

- 3.5 Core 240 mm2 Al.

Losses / kM

- 9.8 kW

- Case Study 1
- > Difference 3.8 kW
- > Running hours 8000 / Annum
- Cost Rs. 8/Unit
- Saving 2.43 Lakhs/Annum
- > Additional Investment 1.3 Lakhs

- > Selection of Cable is very important
- Right selection can cost you more in project stage but cheaper in longer run
- > Periodic health check is very important
- > Thermal Imaging , loading on cables etc. needs to be checked regularly

Presently

- Idle operation of equipment's during lunch hours
- Fans, tube lights, CFL, exhaust fans, conveyor and some machines were operational
- Idle operation is pure wastage of energy

Electrical Panels

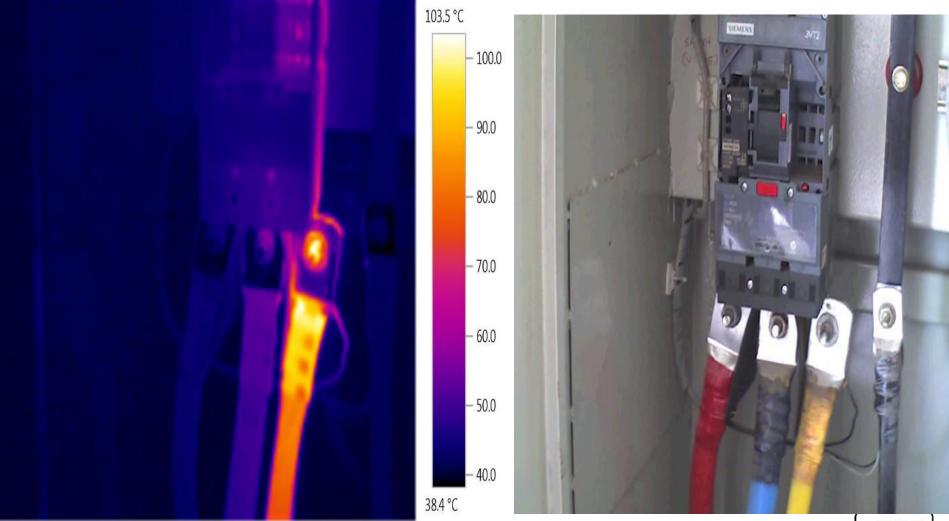
 $\ensuremath{\textcircled{\text{C}}}$ Confederation of Indian Industry

Electrical Panels

Major Components of Electrical Panels

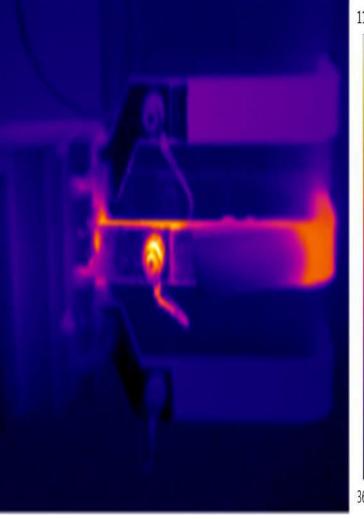
- > Air Circuit Breakers (ACB)
- Moulded Case Circuit Breaker (MCCB)
- Switch Fuse Unit (SFU)
- Miniature Circuit Breaker (MCB)
- > Bus Bars, Wiring & accessories

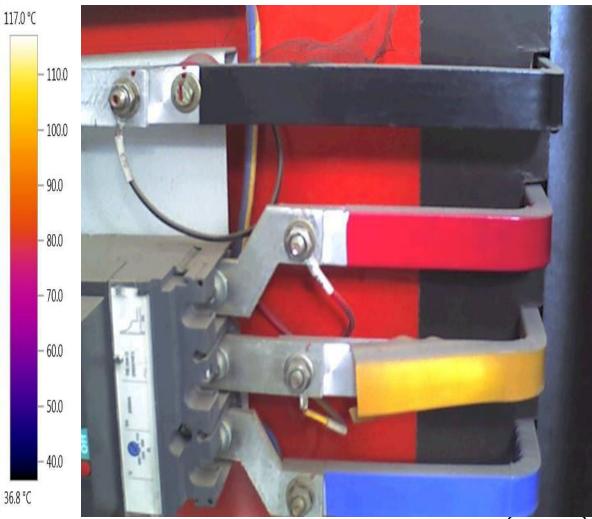
Electrical Panels


LOSSES IN THE PANELS

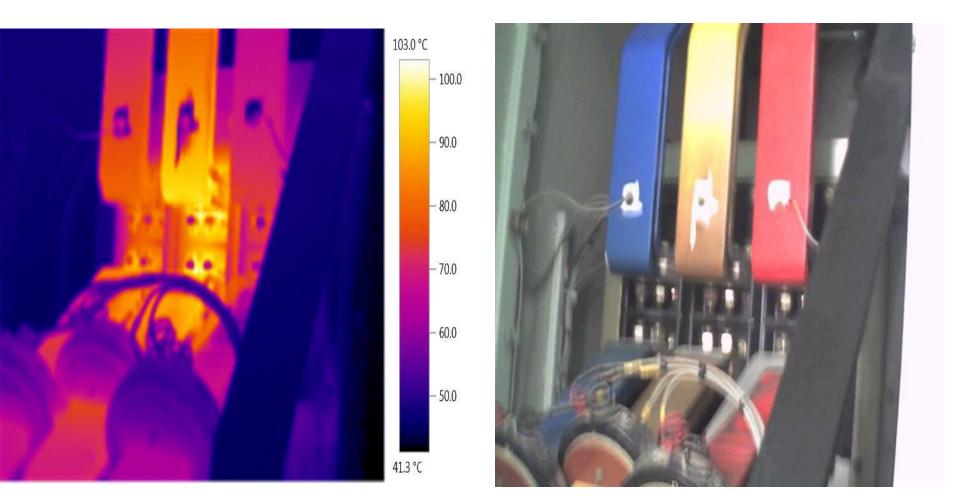
- Losses in Switch gears
- Losses in Wiring
- Losses in Bus Bars
- Losses in Indicators
- Losses in meters, Instrument Transformers
- Losses in Capacitors

Electrical System

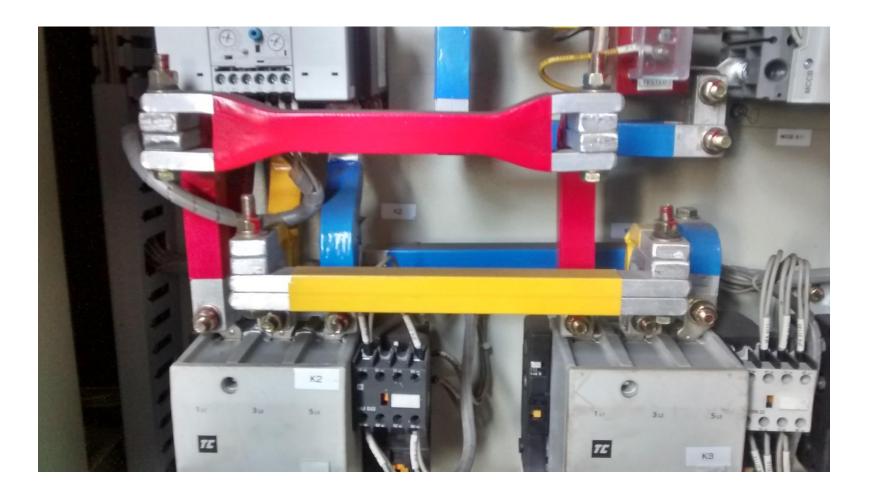

Main MCCB incomer



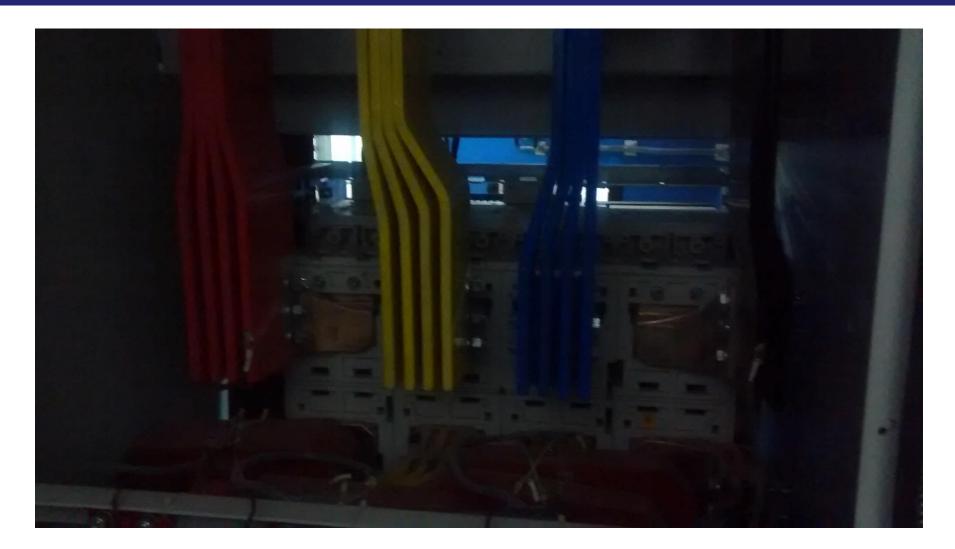
Electrical System

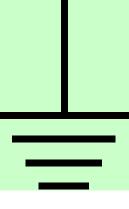

L.T ROOM RO Plant Main MCCB

Thermal Imaging


Air Circuit Breaker

 $\ensuremath{\mathbb{C}}$ Confederation of Indian Industry





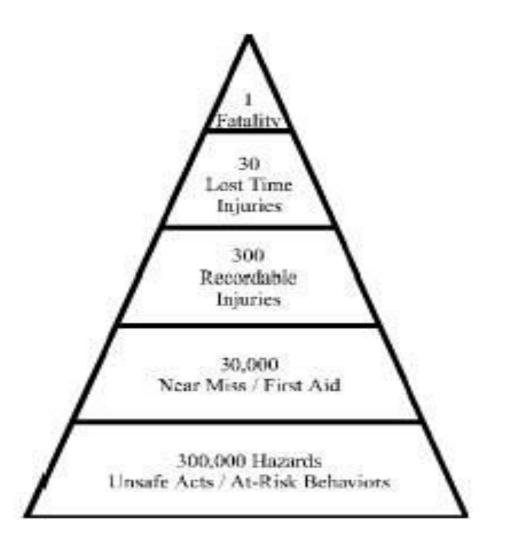
EARTHING / GROUNDING

Introduction

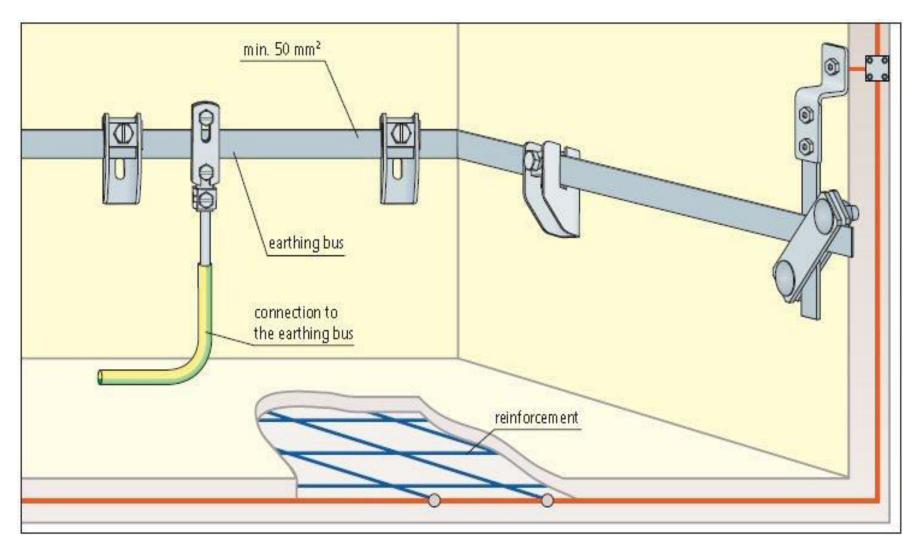
Earthing – **Definition**

In electrical engineering, ground or earth is the reference point in an electrical circuit from which other voltages are measured, or is a common return path for electric current, or a direct physical connection to the Earth.

Electrical Hazards


Electrician receivies fatal shock

Electrician falls from ladder due to jerk reaction from shock


Electrician receivies minor burn from electrical shock

Electrician receives minor shock while connecting light fixture

Electrician connects light fixture with circuit energized

Example

Wrong Practices in Plant

Earthing Wire Connected to Wrong Place

Wrong Practices in Plant

Lot of Joints in Earthing Strips

Good Practices in Plant

 $\ensuremath{\textcircled{\text{C}}}$ Confederation of Indian Industry

General Observations

- > Earthing Plays Very important role in Plant Performance
- Schedule Testing of All earth Pits
- > Earth pit should be isolate before testing
- Schedule maintenance of Earthing Pits
- > Earth grids are not connected to each other
- > All earth Pits should be connected to common grid
- > GI/SS nut bolts should be used for connections
- Use Chemical earth pits

Observations Safety Mats

- Safety Mats should be as per new standard
- Rubber Mats old IS : 5424 /69
- New IS standard for Safety Mats IS:15652:2006
- New International Standard IEC 61111

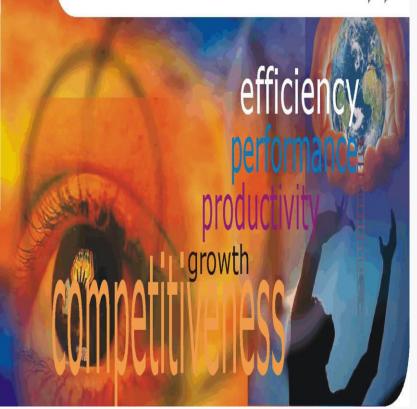
To Sum up...

- Maintenance plays major role in keeping up the electrical system 24 x 7
- We can save lot of losses by maintaining the system well
- Electrical system failure create a lot of production and profitability loss

Thank you

Manpreet.singh@cii.in

09876724003


Welcome to

1st WORKSHOP CAPACITY BUILDING OF LSPs UNDER GEF-UNIDO-BEE PROJECT "PROMOTING ENERGY EFFICIENCY AND RENEWABLE ENERGY IN SELECTED MSME CLUSTERS IN INDIA"

11 May 2018

Nagaur

CII Energy Management Services

Khalid Khan Associate Counsellor – Energy Services Accredited Energy Auditor Confederation of Indian Industry CII – Centre of Excellence for Competitiveness for SMEs

CII Energy Audit & Management

CII Energy Services:

- **CII Godrej Green Business Centre, Hyderabad**
- CII Centre of Excellence for Competitiveness, Chandigarh for SMEs
- CII − EMC, Chennai
- CII − EMC, Ahmadabad
- More than 100 experts involved in energy services
- Team of Accredited & Certified Energy Auditors

CII Energy Audit & Management

- Services
 - Detailed Energy Audit
 - Training Programs on Energy
 - Developing road map/benchmarking on Energy Consumption
 - Missions/workshops/seminars on energy
 - Audited more than 1500 units

CII Energy Audit & Management

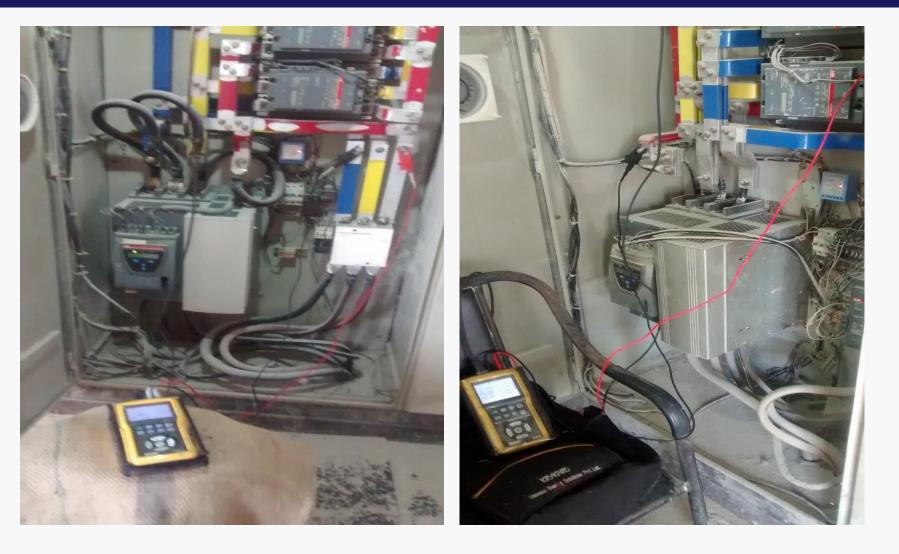
- Major Initiatives & Projects
 - World Class Energy Efficiency in Power Plant
 - World Class Energy Efficiency in Sugar, Paper & Cement Sectors
 - IREDA Project for Energy Efficiency in Textile sector
 - Energy Audit of major DCs sector under PAT Scheme
 - BEE SME program for Energy Efficiency in SME sectors
 - BEE GEF WB Faridabad Cluster
 - Developed Manual on Energy Efficiency at Design Stage

Energy Audit

An energy audit –

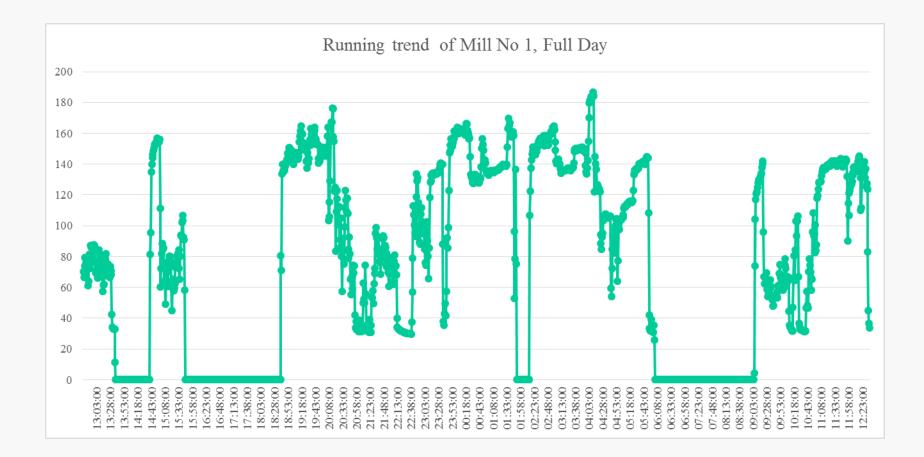
is an inspection, measurement survey and analysis of energy flows for energy conservation in an industry, building, process or system

to reduce the amount of energy input into the system without negatively affecting the output



List of Instruments used during Audit

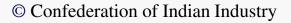
- > Ultrasonic Flow Meter
- Power Analysers 3 Phase & 1 Phase
- Digital Pressure Gauges
- > Thermal Imager
- Vane type anemometer
- IR Temperature Gun
- Lux meter
- > Hygrometer

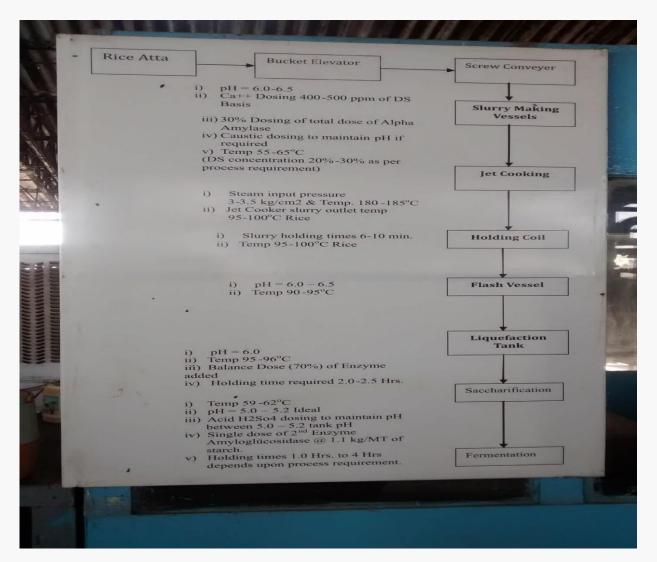


Installation of Power Meter

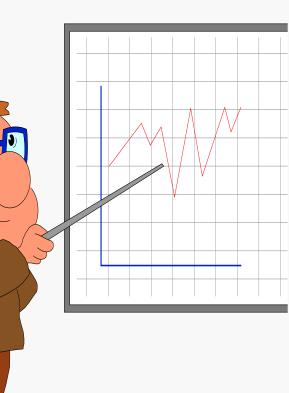
Equipment load pattern

Installation of Flow Meter




Installation of Flue gas analyser

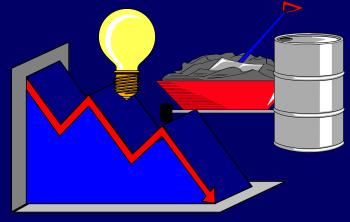
Process Flow Diagram



Energy Audit - Benefits

- Tangible Benefits
 - Reduction in energy consumption
 - Better control over quality
 - Savings in raw material consumption
 - Better equipment life
 - Reduced GHG emissions
 - Intangible Benefits
- Plant expansion designing of parameters
- Energy Efficient equipment purchase
- Alternate fuel/energy sources options

Identification & feasible recommendation for critical issues indian Industry

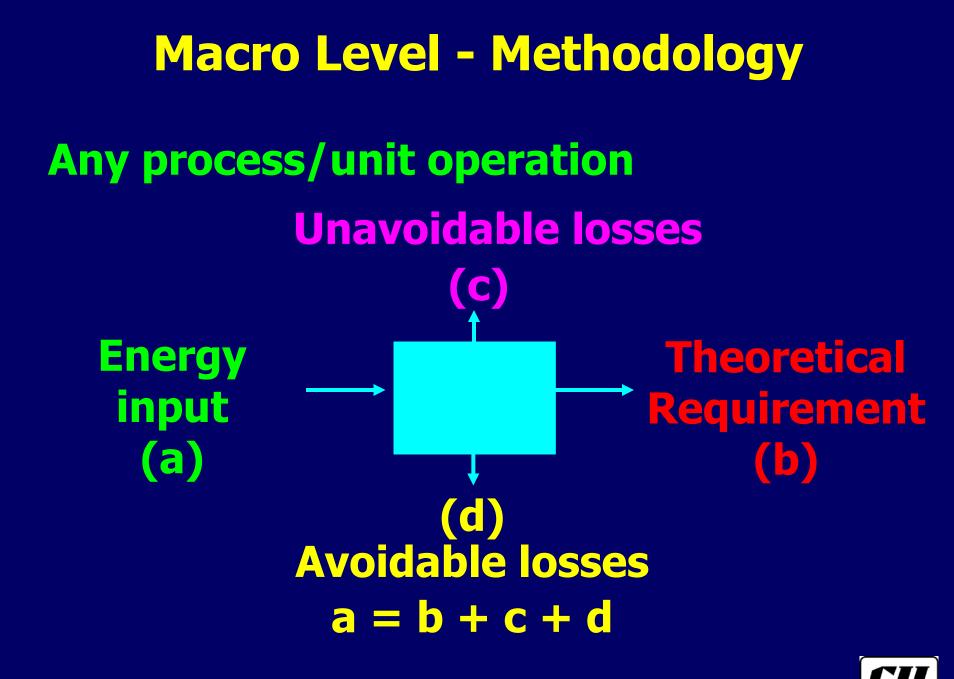


Energy Conservation at Macro Level

Measure of encon activities

Reduction in specific energy and Water consumption

Energy Conservation at Macro Level ...


Capacity utilisation

Threepronged approach

Fine-tuning

Technology upgradation

Losses – Avoidable Vs Unavoidable

- Pumps Valve throttling control or Recirculation
- Air Compressor leakage
- Compressed air generation pressure
- Furnace Radiation losses
- Boiler Flue gas losses
- Over designed equipments Air Compressors, Fans & Blowers etc
- Condenser cooling water losses in Chillers etc

Macro Level - Methodology ...

Focus should be

- To concentrate on avoidable losses
- Quantify the losses
- Identify ways and means for reduction
 - Implementation

Macro Level - Methodology

Losses – Two ways of representing

- > There is compressed air leakage from 6 mm pipe in the plant
- > Pump is operating at 40% valve throttling
- > ID/FD fan being controlled by closing the damper
- Motor is under loaded
- > Boiler flue gas temperature is 40 deg higher than recommended
- > Specific Energy Consumption of Chiller is 0.15 kW/TR higher

Macro Level - Methodology

Losses – Two ways of representing

> There is compressed air leakage from 6 mm pipe in the plant which is costing Rs. 6.0 Lakhs/annum

Pump is operating at 40% valve throttling – Consuming 40% extra power

> Blower flow is being controlled by closing the damper – consuming 5 kW more than requirement

> Motor is under loaded – potential to save Rs. 1.0 Lakhs/annum

> Boiler flue gas temperature is 40 deg higher than recommended -Costing around 2% extra fuel

Specific Energy Consumption of Chiller is 0.70 kW /TR which is 0.15 kW/TR higher than the rated and costs Rs. 30 Lakhs/Annum for 300 TR Chiller

Macro Level - Methodology

Identify ways and means for reduction -

- There can be 3 4 means of reduction
- > Over designed pump -
 - Replacing with correct size
 - > Impeller trimming
 - Speed control
 - > Two pump system

Decision depends on many factor – like cost, reliability, process etc

Coverage

Thermal/Mechanical/Electrical

Boiler and Steam System Ovens HVAC System Air compressors System Leakage and Capacity Test Cooling Towers Major Motors Thermal Imaging Mixers and Grinders Process Equipments Electrical distribution System Bill Analysis Harmonics Study Power Factor Improvement Capacitors Health Checkup Electrical Safety & Cables Lighting Fans & Blowers (AWU & AHU) All Major Pumps Dust Collectors

Three Pronged Approach

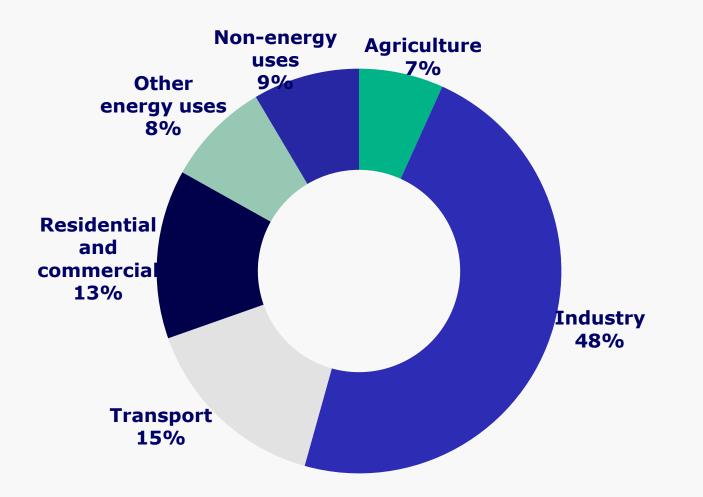
Simple Projects (< 6 months payback)

Medium term (6-18 months payback)

Long term (18-30 months payback)

Why energy saving?

There have always been good reasons for energy saving


- CO2 reductions
- Environmental pollution
- Reduced operation costs

Two reasons force the market to act

- Legislation worldwide and local
- Increasing energy costs

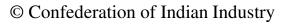
Commercial Energy Consumption Pattern in India

Energy conservation potential from various industries

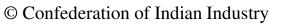
	% Share of Energy Cost	Conservation Potential (%)
Iron and Steel	15.8	8-10
Fertilisers & Pesticides	18.3	10-15
Textile	10.9	20-25
Cement	34.9	10-15
Chlor-alkali	15.0	10-15
Pulp and Paper	22.8	20-25
Aluminium	34.2	8-10
Ferrous Foundry	10.5	15-20
Petrochemical	12.7	10-15
Ceramics	33.7	15-20
Glass	32.5	15-20
Refineries	1.0	8-10
Ferro-Alloys	36.5	8-10
Sugar	3.4	25-30

Energy Saving Opportunities

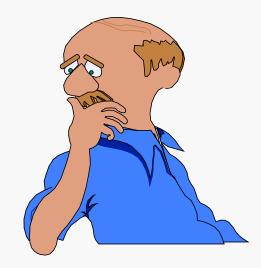
- Industrial sector consumes about half of the total energy generation
- * Energy can be saved up to 5 30 %
 - 5 10 % of energy saving by following best operating practices
 - > 10 30 % of energy saving achieved by using energy efficient systems


S. No	Project name	Total Energy Bill (Rs. Lakhs)	Total Savings (Rs. Lakhs)	Average Cost Saving
1	Shri Ram Pistons & Rings Ltd Ghaziabad	9946	1465	15%
2	Rockman Industries Ltd, Ludhiana	1284	196	15%
3	Indeutsch Industries Pvt,Ltd Brush Division	168	46	27%
4	Orient Bell Limited	1857	384	21%
5	Virola Agra	135	40	30%
6	Honda Cars Ltd Tapukara	1868	247	13%
7	Sun Pharma Toansa	2207	464	21%
8	Dileep Industries	27	6	21%
9	Indeutsch Industries Pvt Ltd	141	28	20%
10	SRF Ltd	114	41	36%
11	Anmol Bakers	1117	217	19%
12	DSM	1103	231	21%

		Total Energy	Total	Average
S. No.	Project name	Bill	Savings	Cost
		(Rs. Lakhs)	(Rs. Lakhs)	Saving
13	Samsonite	325	83	25%
14	Snam Alloys (Unit I) & (Unit II)	2428	205	8%
15	Snam Alloys, Pakala Mandal	5848	275	5%
16	Hotel Vibe by Lalit	117	15	13%
17	Star Mall	563	42	7%
18	Federal Mogul	6000	627	10%
19	Tasty Dairy	346	52	15%
20	Oswal Castings	686	82	12%
21	Lumax DK Auto Industries	367	115	31%
22	Somany Ceramics Pvt Ltd	6145	430	7%
23	Abhishri Packaging	365	105	29%
24	FMI Limited	405	96	24%
25	Godrej & Boyce Manufacturing Company Ltd	103	23	22%
	Total	43664	5514	13%
	Average			19%



S. No	Project name	Total Energy Bill (Rs. Lakhs)	Total Savings (Rs. Lakhs)	Average Cost Saving
1	Tiwana Oil Mills, Sirhind	313	85	27%
2	Mayur Leather Jaipur Plant-1	25	7	28%
3	Mayur Leather Jaipur Plant-2	29	7.25	25%
4	Federal Mogul Bhiwadi	353	139.32	39%
5	Hindustan Zinc Rampura Agucha	22326	679	3%
6	Uniproducts Rewari	1015	190.4	19%
7	Colgate Palmolive Sricity	643	196.21	31%
8	Cadbury Malanpur	1909	261.94	14%
9	IGEA Chandigarh	7027	1749.12	25%
10	TDI Kundli	796	110.24	14%
11	Piramal Glass, Gujarat	19810	390.9	2%
12	Baba Farid Institutions Bathinda	63	11.76	19%
13	Automat Industries	104	17.3	17%
14	Federal Mogul Parwanoo	604	243.6	40%



S. No	Project name	Total Energy Bill (Rs. Lakhs)	Total Savings (Rs. Lakhs)	Average Cost Saving
15	IGEA Hoshiarpur	272	108.4	40%
16	Frick India Pvt Ltd Faridabad	357	53.1	15%
17	DEA Quardlife Sciences	208	42.59	20%
18	Mayur Uniquoters Jaipur-1	765	73.1	10%
19	Mayur Uniquoters Jaipur-2	919	88.12	10%
20	Anmol Steel, Kolkata	346	61.2	18%
21	NBC Newai	582	82.92	14%
22	NBC Manesar	347	94.5	27%
23	NBC Jaipur	8449	361.5	4%
24	NBC Vadodra	1060	130.63	12%
25	Minda Security Pune	155	24.9	16%
26	Lumax, Dharuhera	1455	296	20%
	Total	69932	5506	8%
	Average			20%

✓ 3 Major Factors

Air Compressor

- 90 kW & 45 kW compressors in operation
- Present power consumption 87 kW & 54 kW on loading
- Total power = 141 kW
- Running hrs = 24 hrs, 320 days/yr = 7680 hrs/yr, power cost Rs. 7.7/unit

Cost Air Compressor Operation

- Cost of operation
- Energy Cost in 1 yr
- Energy Cost in 10 yrs
- Initial cost
- Life of Comp
- Maintenance cost

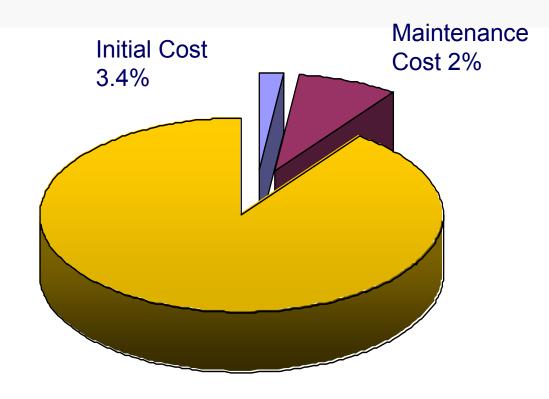
- Rs. 83.38 Lakhs
- Rs. 833.8 Lakhs
- Rs. 15.0 + 5.0 Lakhs
- 10 yrs
- Rs. 1.0 Lakh/yr

Life cycle cost of Dust collector blower

- Total blower power
- Initial cost
- Life of Blower
- Maintenance cost
- Energy Cost in 1 yr
- Energy Cost in 10 yr

- 40 kW
- Rs. 3.5 Lakhs
- 10 yrs
- Rs. 0.5 Lakh/yr
- Rs. 23.0 Lakhs
- Rs. 230.0 Lakhs

Life cycle cost of Induction Furnace 1 T


- Total power
- Initial cost
- Life of Furnace
- Maintenance cost
- Energy Cost in 1 yr
- Energy Cost in 10 yr

- @ 600 units/T
- 60 Lakhs
- 10 yrs
- Rs. 5.0 Lakhs/yr
- Rs. 280.0 Lakhs
- Rs. 2800.0 Lakhs

I. Energy & Life cycle cost of an equipment

- Energy Cost in 10
 yrs- Rs. 833.8
 Lakhs
- Initial costRs. 30.0 Lakhs
- Life of Comp10 yrs
- Maintenance cost
 - Rs. 10 Lakh/yr

Energy Cost 94.6%

II. Equipment Efficiency & System Efficiency

Energy efficient system is the combination of best and most efficient components –

system efficiency can be defined at different system levels

Energy Efficiency of Compressed Air System:

 $\eta_{air\ compressor\ system} =$ $\eta_{generation} X \eta_{distribution} X \eta_{user}$

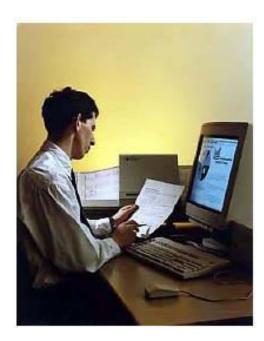
 $\begin{aligned} &\bigcap_{induction furnace} = \\ &\bigcap_{furnace type} X \eta_{control} X \eta_{electrical} X \\ &\eta_{Automation} \end{aligned}$

System efficiency – energy efficient equipment

may not work efficiently in a system !!!!

Example –

Furnace Pump Compressor blower


III. Energy Monitoring & Targeting

Energy Monitoring and Targeting

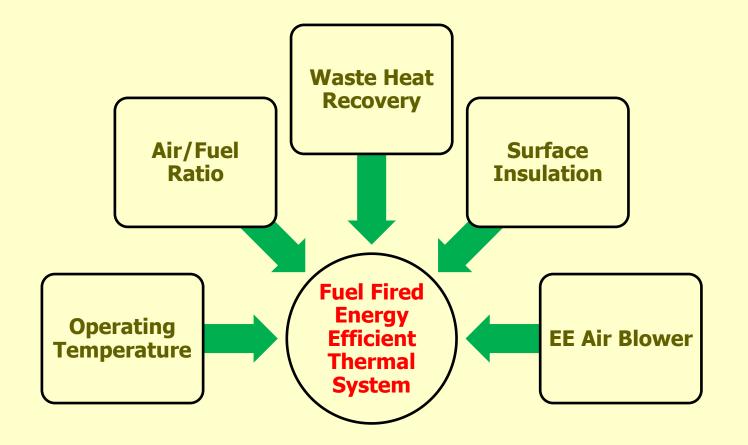
Monitoring To account for your energy use

Targeting Assessing, setting & aiming for a particular consumption

- Help to eliminate waste & reduce energy use
- Provide the information required to make informed decisions
- Improve motivation
- Typical cost savings from a M&T programme are between 5-10%

Energy Monitoring

- Application of EMT
 - Predictive maintenance
 - Monitors major variation in operating parameters of equipment / Power consumption
 - Root cause analysis
 - Helps understanding energy wastage / idle operation of equipment
 - Measurement & Verification
 - Enables to access trends in energy usage in a facility
 - Verification of benefits achieved by implementation of energy conservation measures



Thermal Systems

- Furnaces
- Boilers
- Hot Water Generators
- Hot Air Generators
- Thermic fluid System
- > Ovens

Energy Audit Approach

Parameters affecting the performance

Operating Temperature

- Close to operational requirement
- Higher the temp. lower the efficiency & higher

scale / metal loss

- For 12°C rise in temp. efficiency drops by 1% for furnace
- Every 4.8 kg/cm2 drop \Rightarrow 1% increase in efficiency

Parameters affecting the performance

Air/ Fuel Ratio

- Highly critical parameter
- Should be optimum

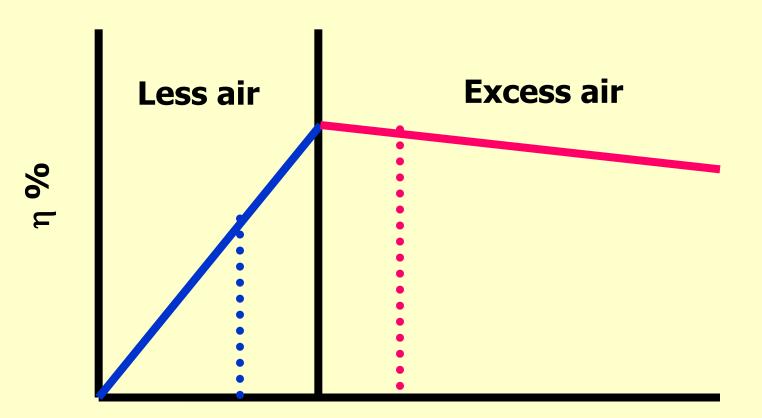
Air quantity for combustion -An important parameter for energy efficiency

Exact air quantity

- Theoretical air requirement
 can be estimated from
 combustion theory
- **GP** Excess air required
- Quantity of excess air
 depends on mixing capability
 of fuel

- Mixing capability
 - Solid < Liquid < Gas
- Lesser the mixing capability
 - more the quantity of excess air

Basic principles of combustion

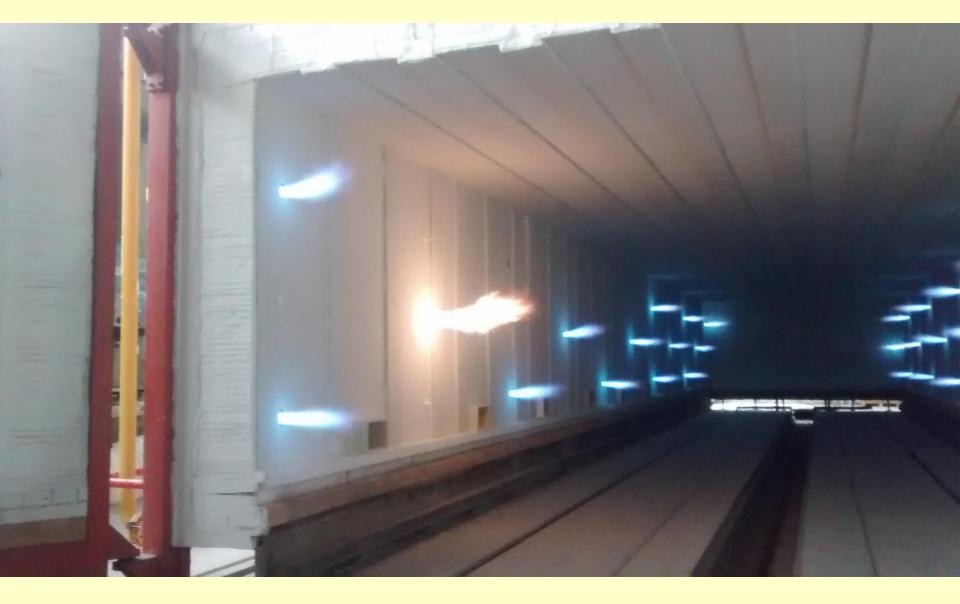

Fuel ingredients : C, H & S

С	+	O ₂	:	CO ₂
2H ₂	+	02	:	2H ₂ 0
S	+	O ₂	:	SO ₂

Excess air %	Efficiency %
10	84.8
100	78.5
140	75.0

Keeping stack temperature constant

Effect of air quantity on efficiency



Air quantity

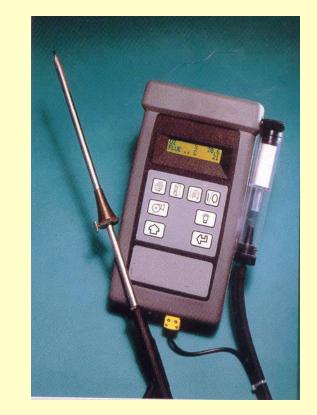
Effect of air quantity on efficiency

Effect of air quantity on efficiency

Parameters affecting the performance

Advance Energy Efficient Burners

Typical excess air requirements and resultant level of oxygen in flue gases


Coal	Oxygen %	Excess Air
Pulverised firing	4.0-5.0	20-30
Stoker firing	4.5-6.5	25-40
Fluidised bed		
combustion	4.0-4.5	20-25
Oil	1.0-3.0	5-15
Natural gas	1.0-2.0	5-10
Black liquor	1.0-2.0	5-10

Reduce excess air to optimal level

Instruments

Ortable combustion analyser

- Merits & Demerits
- Small size, multiple boilers
- \bigcirc On-line O₂ analyser
 - Large boilers (say, 70 TPH)
 - Location
 - Whether automatic?

\bigcirc On-line CO/O₂ analyser with O₂ trim control

- High capacity boiler

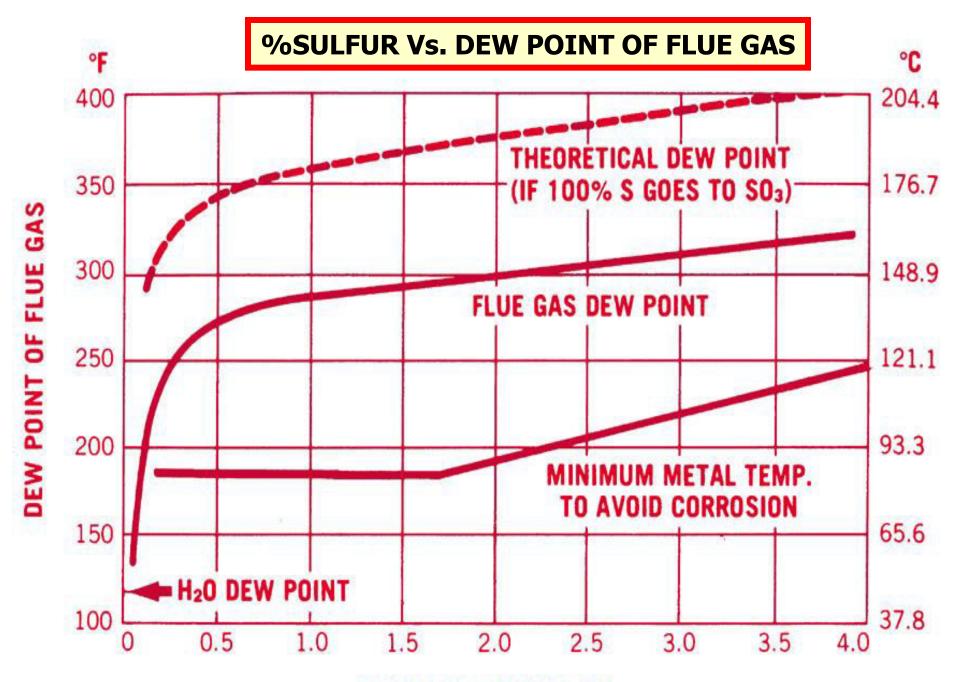
Flue gas temperature

Generature

- Excess fuel firing
- Fouled tubes (scaling inside/outside tubes)
- **Reasons for fouling**
 - Combustion particles deposition
 - Water treatment inadequate

Every 22°C drop \Rightarrow 1% efficiency increase

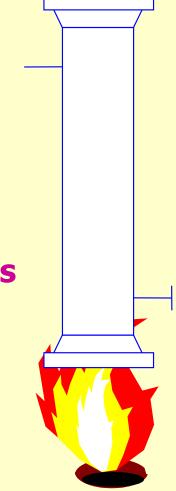
Flue gas temperature


Better to reduce exhaust temperature

Lowest permissible exhaust temperature depends on Sulphur content in fuel

G For 1% Sulphur content in fuel

- Recommended lowest exhaust flue gas temp. is about 150°C
- For FO, LSHS and Coal


Reduce exhaust flue gas temperature to optimum levels

% SULFUR IN FUEL OIL

Parameters affecting the performance

- **Waste Heat Recovery**
- When do we recover waste heat?
- when exit temperature high
- when furnace runs on a continuous basis
- **Advantages of WHR**
- reduction in fuel loss
- reduction in furnace heating time

Parameters affecting the performance

Surface Insulation- How important

- Adequate insulation-a must
- What is the optimum surface temperature?
 - 60 °C for thermal system
- Radiation Loss Varies as fourth power of Temp Radiation loss at 150 °C : 1500 Kcal/m2/hr Radiation loss at 70 °C : 450 Kcal/m2/hr
 Avoid the openings of furnaces to reduce radiation losses and leakages of combustion gas through openings

Present system

Three fuel fired furnaces installed for melting
 2 Skelner Furnaces
 1 Ton & 1.5 Ton
 2 Tower Furnaces

Furnaces are fired with Furnace Oil

Present system

- > Operating Temperature
 - No monitoring system

≻Air/ Fuel Ratio

- No FO meters for individual furnaces
- > No proper control for air/ fuel ratio
- Damper of combustion air controlled manually
- Poor Burner Efficiency-Fuel Burning with orange flame

➤Waste Heat Recovery –

- Recuperator of Skelner furnaces not working properly
- Temperature of combustion air is in range of 45-50 °C of all furnaces

Present system

> Opening losses

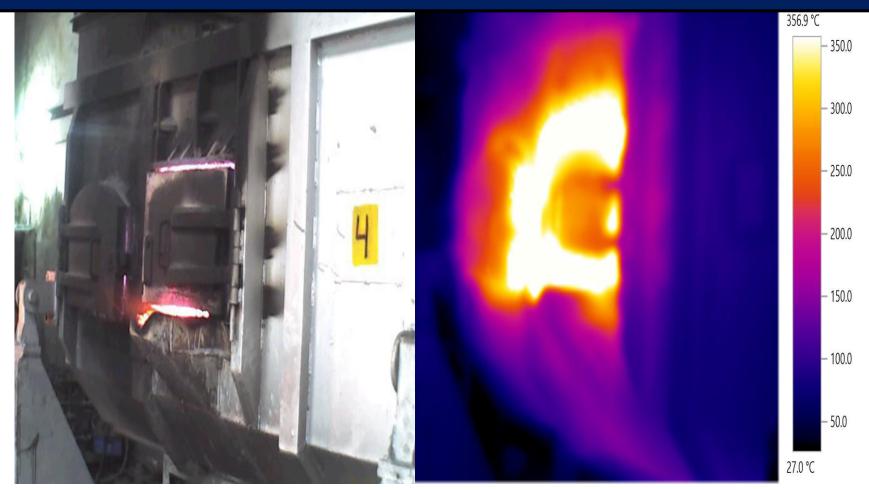
Gates of furnaces have high opening, leading to high radiation losses

> High positive pressure inside the furnaces

> Hot combustion gas coming out of openings leading to energy and production loss

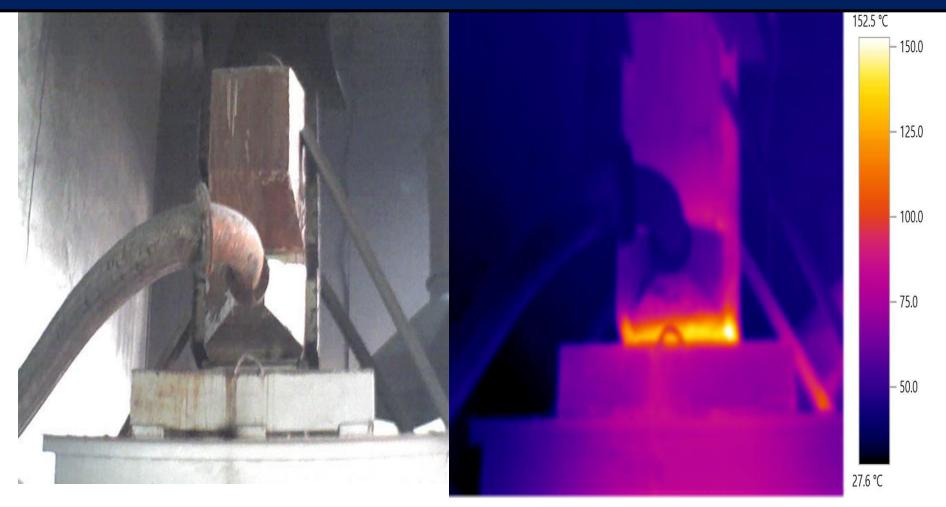
Surface Insulation

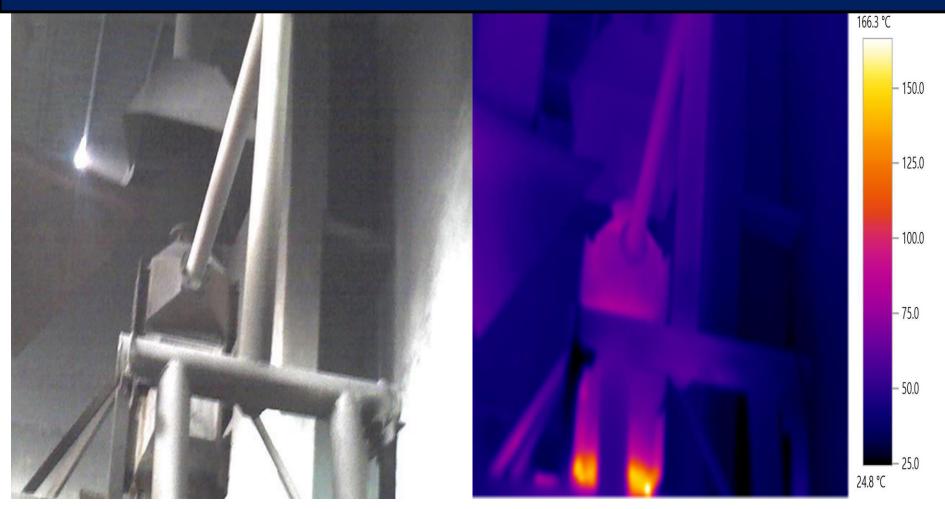
Combustion Air line and recuperator of Skelner uninsulated

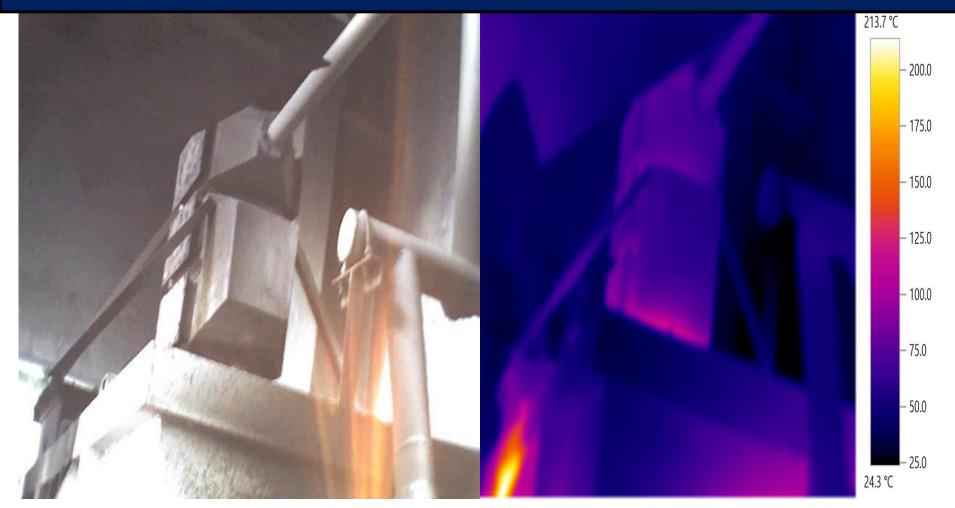

Combustion Air line of Tower Furnace is un-insulated

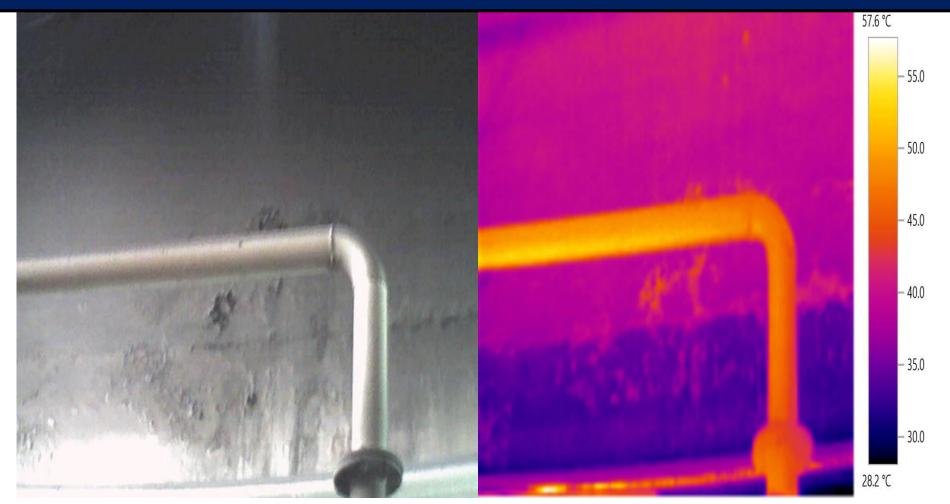
Surface Temperature of Tower furnace and Skelner Furnace is in range of 90-300 °C

Opening Loss and Combustion gas loss Skelner Furnace

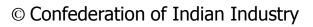

Skelner Furnace


Skelner Furnace


Recuperator Skelner Furnace

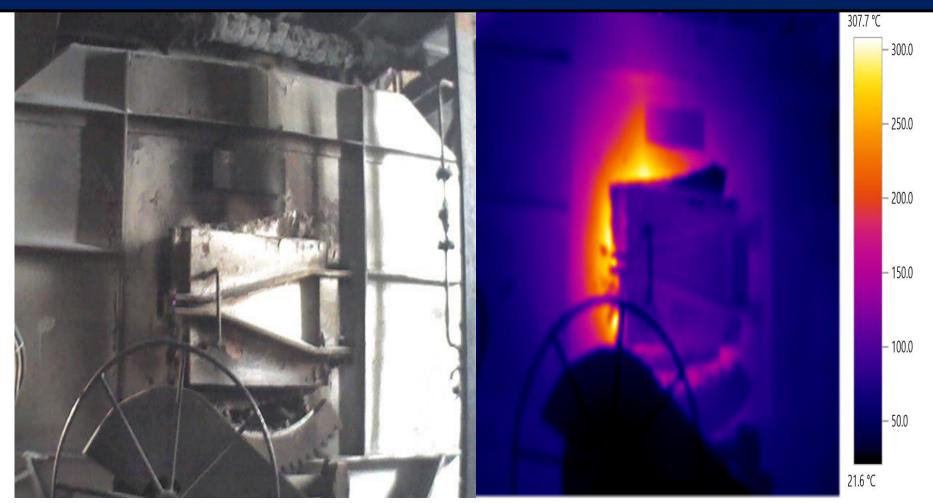

Recuperator Skelner Furnace

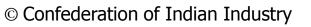

Recuperator Skelner Furnace



Combustion Air Line-Skelner Furnace

Tower Furnace Front





Tower Furnace

Tower Furnace Side

Specific Fuel Consumption in Furnace

- Theoretical Value of Heat required M x Cp x 🛦 T
- Mass Specific Heat Cp of Al Temp Rise Heat Reqd.

- 1000 kG
- 0.22 kcal/kg Deg C
- 730-30 = 700 Deg C
- 154000 kcal/tonne
- Efficiency of Furnace 25-35 % Heat Reqd. @ 25% Eff - 616000 kcal/tonne Fuel required @ GCV 10000 kCal/kg = 61.6 kG/Tonne

Heat Reqd. @ 35% Eff - 440000 kcal/tonne Fuel required @ GCV 10000 kCal/kg = 44 kG/Tonne

On Tower Furnace (DEC 15)			
Material Molted	FO Used	SEC	Efficiency
(Ton)	(Kg)	(kg/Ton)	% age
782.926	57844	73.88	21 % approx.

On Skelner Furnace (DEC 15)			
Material Molted (Ton)	FO Used (Kg)	SEC (kg/Ton)	Efficiency % age
285.953	27300	95.47	16 % Approx.

Action Plan

- Install temperature sensors on all Furnace & avoid overshooting of temp.
- Replace existing burners with Modulation burners
- for maintaining A/F ratio
- Use VFD on combustion Air blower in place of domnor
- damper
- Proper Utilize Recuperator of Skelner furnaces
- Reduce openings to minimum

Action Plan

- Install recuperator on tower furnace to Preheat combustion air
- ➢ Pre Heat FO day tank for efficient combustion and control its temperature up to 100 Deg. C
- Improve surface insulation
 Insulate FO line and combustion air flow line
 Use insulation paints on Furnaces
- Install weighing balance close to furnace to avoid temperature drop of molten metal

Potential Saving > 25 - 30 % Saving Calculation = 15% of Total Annual FO bill

Annual Savings	-	Rs. 19.50 Lakhs
Investment	-	Rs. 10.00 Lakhs
Payback	-	6 Months

Present Analysis –

Unit I			
SN	Parameters	Units	Figures
1	Fo Consumption	Litres/Day	80
1	FO Cost	Rs./Kg	33
3	Plant Running hours	Hours/Day	6
4	Plant Running days	Days/Annum	300
5	Weight of Product	gm	250
6	Average Production	Pieces/Day	1500
7	Specific Energy Consumption	Liters/Ton	187

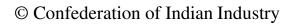
Present Analysis –

Unit II			
SN	Parameters	Units	Figures
1	Fo Consumption	Litres/Day	70
1	FO Cost	Rs./Kg	33
3	Plant Running hours	Hours/Day	6
4	Plant Running days	Days/Annum	300
5	Weight of Product	gm	250
6	Average Production	Pieces/Day	1500
7	Specific Energy Consumption	Liters/Ton	186

Present Analysis –

Unit III			
S N	Parameters	Units	Figures
1	Fo Consumption	Litres/Day	80
1	FO Cost	Rs./Kg	33
3	Plant Running hours	Hours/Day	6
4	Plant Running days	Days/Annum	300
5	Weight of Product	gm	290
6	Average Production	Pieces/Day	1700
7	Specific Energy Consumption	Liters/Ton	162
8	Specific Energy Consumption (Recommended)	Liters/Ton	72
9	Saving Potential	Rs./Year	5,00,000

Annual Savings - Rs. 5.00 Lakhs


Thank You

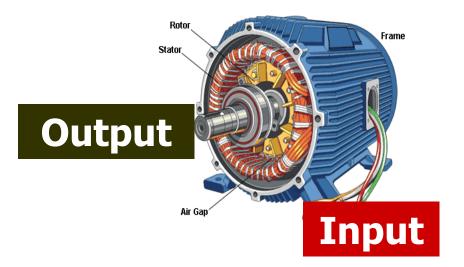
Khalid Khan khalid.khan@cii.in

Motors

TYPES OF MOTORS

AC MOTORS Very common in Industries

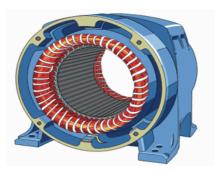
DC Motors
 Generally installed for variable speed applications



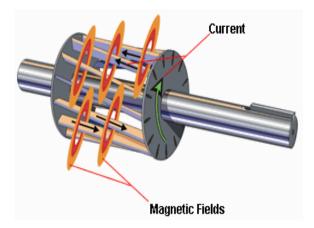
Motor Efficiency

Effectiveness with which a motor

converts *Electrical* energy to


Mechanical Energy

$Efficiency = \frac{Out put Power}{Input Power} X 100$


AC Induction Motor

Primary winding connected to "POWER SOURCE"

STATOR

Secondary winding carries "INDUCED CURRENT"

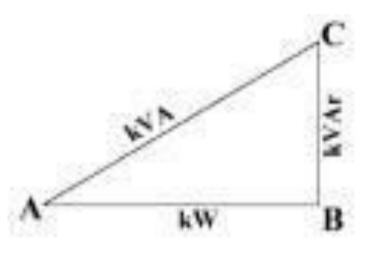
ROTOR

Watts Losses

- **Stator & Rotor losses I² R**
- > Iron loss Voltage Dependent
- Friction & windage losses Independent
- > Stray load loss over hang, air gap etc

Motor Losses

- Current dependent Copper losses
 Stator
 Rotor
- Voltage dependent Iron losses
 Magnetization
 Eddy Current
 Friction and Windage losses

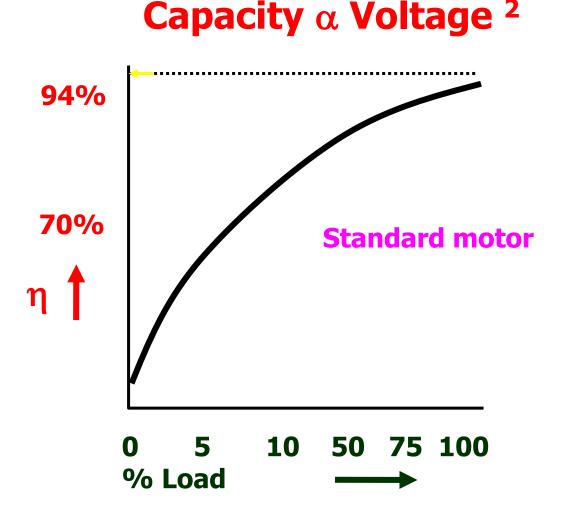


Range of Losses in AC Induction Motor

Range (H.P)	% of Loss	At FL Efficiency %
1 - 10	14 - 35	65 - 86
10 - 50	09 - 15	85 - 91
50 - 200	06 - 12	88 - 94
200 - 1500	04 - 07	93 - 96
1500 & above	4	95 - 96

Basic Formulas

Power= $\sqrt{3}$ **V I Cos** ϕ **Cos** ϕ **is power factor** Capacity α Torque α Voltage²



Energy Waste - Causes

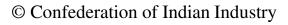
- Use of less efficient motors
- > Oversized / under loaded motors
- Improper supply voltage
- Voltage fluctuations
- Poor power factor
- Idle running

Motor Efficiency - Improvement

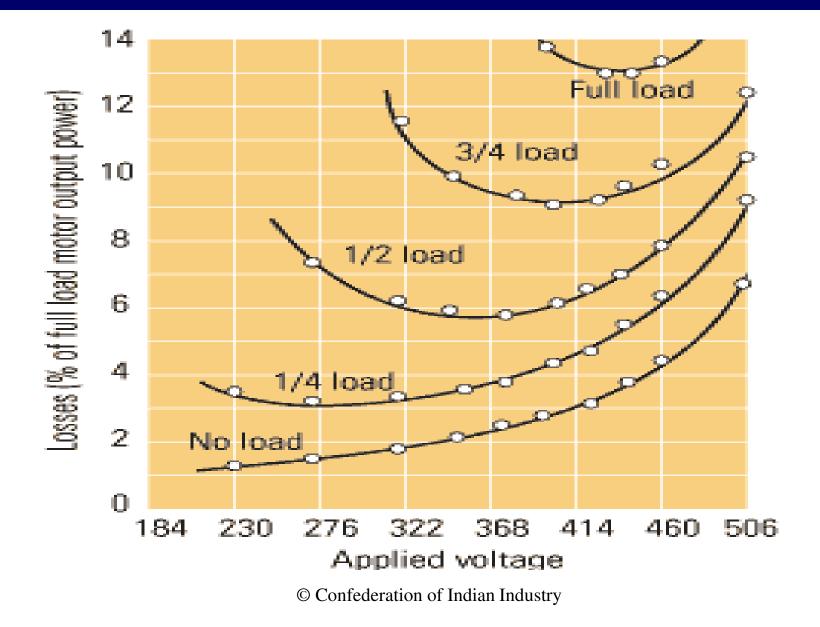
Voltage Optimization

Capacity α Voltage 2

Impact on motor operating parameters

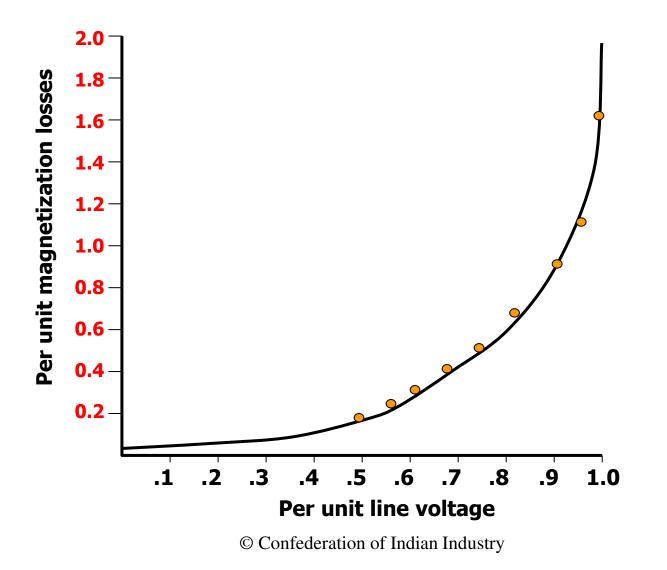

- Capacity reduces
- Reduction in voltage dependent losses Drop in Magnetization current
- PF improves
- Load current drops
- Load factor improves
- Efficiency Improves

Voltage Optimization


What are the effects of voltage optimization?

- (Voltage 415 V --> 400 V)
- 100 HP Motor 100 % Loading Increase in Load Current
- 100 HP Motor 80% Loading
 Decrease in Load Current Optimum Level
- 100 HP Motor 50% Loading Decrease in load current – Still Potential

Effect of Voltage on Motor Losses



Optimize The Plant Operating Voltage -Overall

- Plant operating voltage plays a critical role in energy conservation
- On line voltage optimising devices to regulate the operating voltage
- Magnetization losses vary exponentially with the voltage

Motor Magnetization Losses Vs Motor Voltage

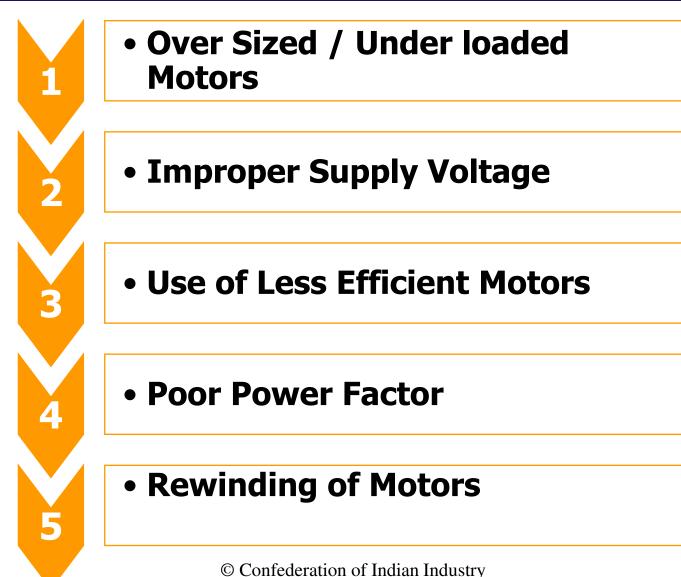
Optimise The Plant Operating Voltage-Overall

- Voltage optimisation Potential will vary with over all Loading pattern of all motors
- To be implemented after analysing the loading pattern of all motors
- Reduce Voltage from rated value In steps
- Monitor Energy Consumption
- Arrive at Optimum Voltage

Voltage Optimisation-Overall

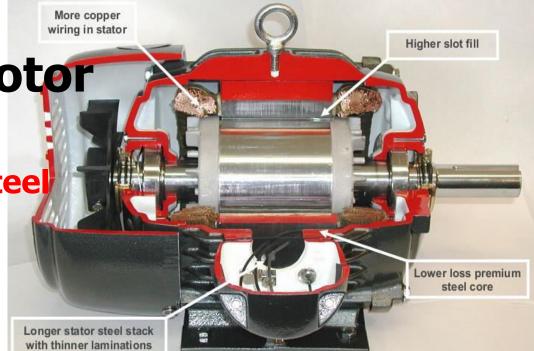
- Distribution Transformers
- 2000 kVA, 433 Volts Supply Voltage
- LT Motors Loading : 20 80%
- Transformer tap position reduced from normal tap
- Voltage before optimization = 420 Volts
- Average Load = 850-900 KW
- Optimized voltage
 = 400-405 Volts

Annual Savings : Rs.1.3 Lakhs



Energy Efficient Motor

© Confederation of Indian Industry


WHY MOTORS ARE BECOMING LESS EFFICIENT

Energy Efficient Motor

- Use of lower loss silicon steel
- Longer core
- Thicker wires
- Thinner laminations

- 20% more copper compared to standard motors to reduce the stator losses
- Rotor losses are reduced by increasing the mass of rotor conductors and / or increasing their conductivity
- Precision air gaps to reduce current requirements
- Improved winding and lamination designs to minimize energy consumption

Energy Efficient Motor

- lesser slip
- Improved fan design
 - **Cooler operation & Increases motor insulation life**
- 1.15 service factor
- Greater flexibility in handling voltage variations and imbalances
- High power factor
 - **D** Eliminate need for PF correction

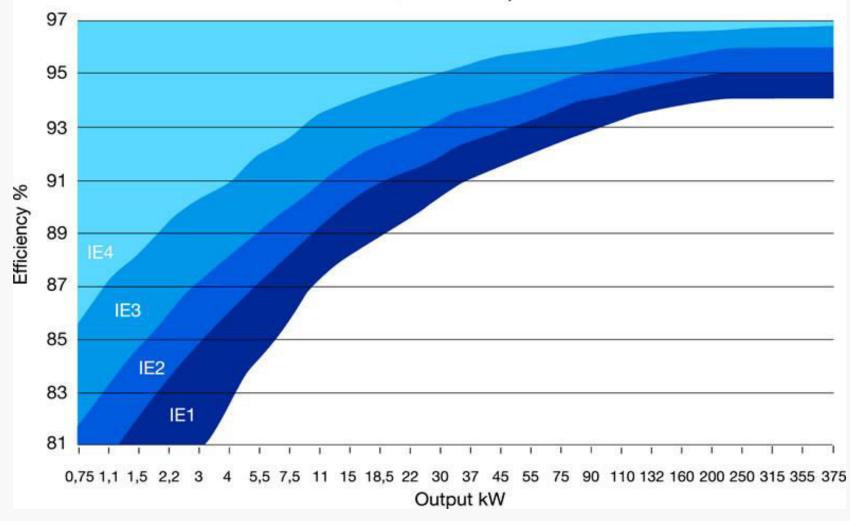
Energy Efficient Motors

New efficiency classes defined by IEC

Super premium efficiency *	IE4	Super premium efficiency
Premium efficiency	IE3	Premium
High efficiency	IE2	Comparable to EFF1
Standard efficiency	IE1	Comparable to EFF2

IEC standard indicated a Super Premium class with 15% lower losses than the IE3

© Confederation of Indian Industry


Comparison of efficiencies of Standard & Energy Efficient Motors

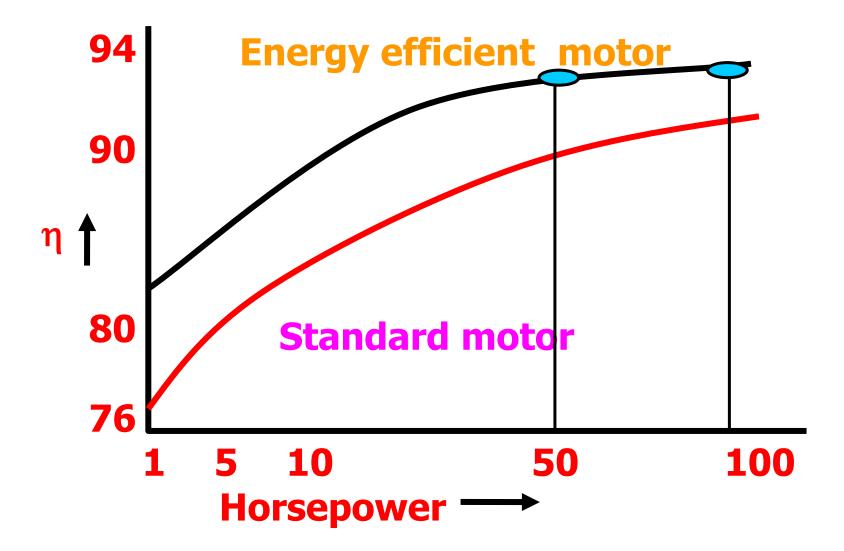
Output 4 Pole	IS 8789	eff 2 as per IS 12615	eff 1 as per IS 12615
0.75 kW	71.0%	73.0%	82.5%
1.5 kW	76.0%	78.5%	85.0%
3.7 kW	83.0%	84.0%	88.3%
11 kW	85.5%	88.4%	91.0%
18.5kW	87.0%	90.0%	92.2%
37 kW	88.5%	92.0%	93.6%
75 kW	Not specified	93.6%	94.7%
110 kW	Not specified	94.4%	95.2%
160 kW	Not specified	95.0%	95.8%

Efficiency values are subject to tolerance as per IS325

IE efficiency classes for 50 Hz 4-pole motors

IE Classes - 4 pole

© Confederation of Indian Industry


Loading vs Efficiency

Motors are generally loaded between 40-60%

- Due to Higher starting Torque
- Varying process requirements
- Efficiency of Energy Efficient Motors is higher than conventional motors and flat between 50-100% loading

Energy Efficient Motor – Part load Operation

© Confederation of Indian Industry

Advantages

- Optimum efficiency
- Longer life
- Lower operating cost
- Better tolerance to thermal and electrical stresses
- Ability to operate at higher ambient temperature
- Can withstand abnormal operating conditions

When to Install EE Motors?

New Projects

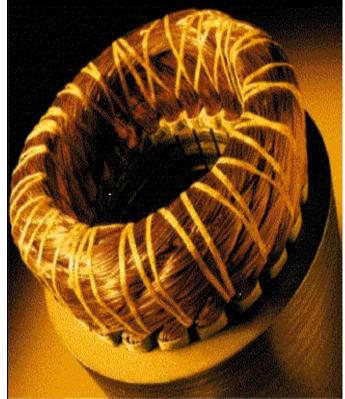
- EE Motors ideally suited
- **Rewinding of Old motors**
 - In case of Normal Failure
 - Fit case for Replacement after rewound 5 times

Applications where EE motors cannot be installed ?

EE Motors are not to be Installed for Intermittent duty applications like crane, Hoist etc

Rewound Motors

Motor Burning


- Quality of insulation between stampings detoriates
- **Eddy current losses increases**
- > Magnetic property detoriates
 - Magnetic losses increases
- Causes drop in efficiency

Rewound Motors

Bearing failure

- Rotor scratches stator
- Air gap becomes uneven
- Torque induced not uniform
- Net torque developed is low
- Causes drop in efficiency
- Motors replacement should be analysed case to case basis
- Maximum 5 times motor can undergo rewinding – normal failure

Replace Conventional Old Motors With Energy Efficient Motors

- It has been implemented in many industries
- Case study is from one of the textiles industry
- Ring frames are vital and continuous operating equipment in textile industry
- Fotal number of RF machines 30 Nos.

Replace Conventional Old Motors With Energy Efficient Motors

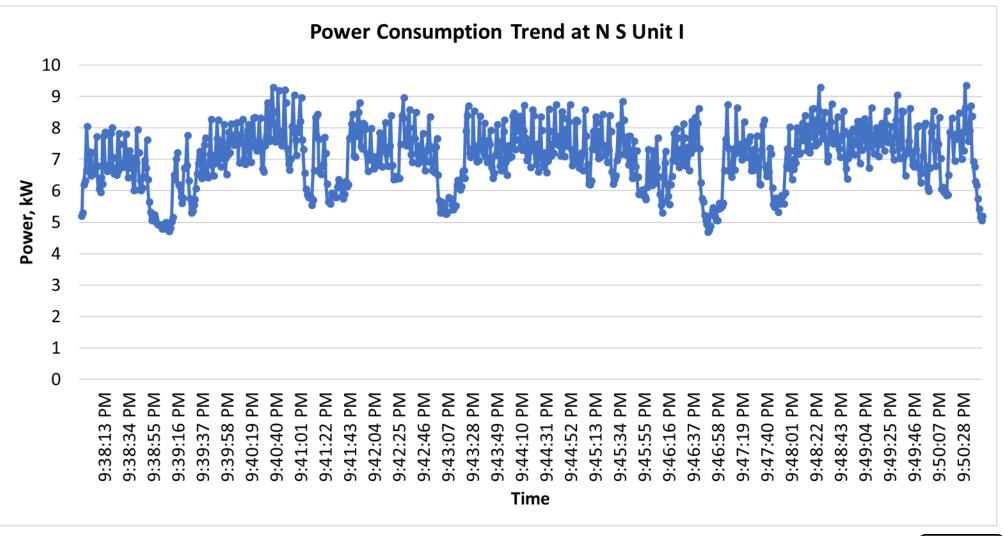
Continuous operation

Results:

Pay back

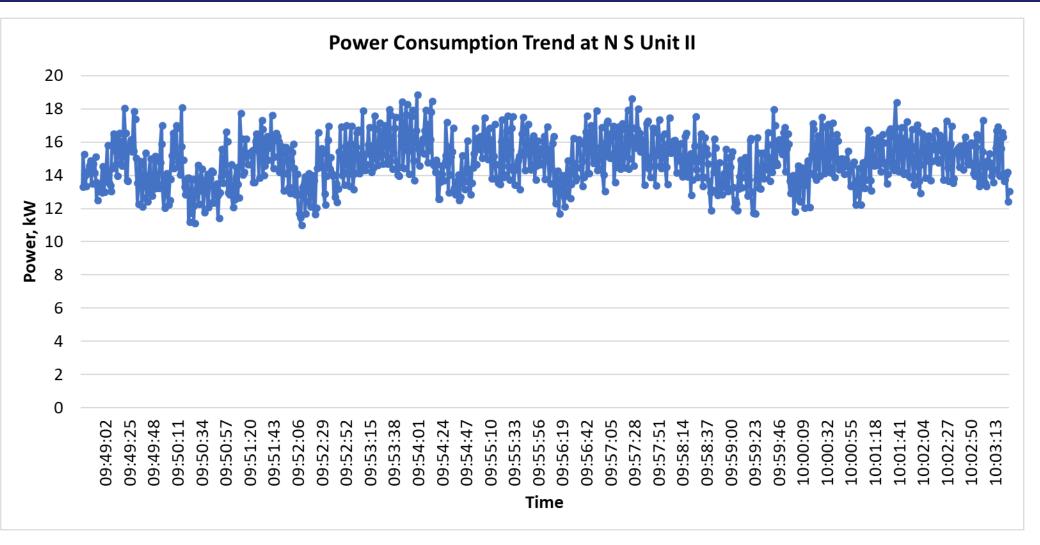
Motors	Rated kW	No load kW	Load kW
Old motor	15.0	2.32	9.92
Energy efficient motor	15.0	1.56	7.36
Difference in consumption		0.76	2.56

- Savings Rs. 6.7 lakhs **Investment**
 - Rs.10.2 lakhs
 - **19 month**


Comparison with Energy Efficient Motor

- There are two same size motor is operating for one part, punching Application
- Following table shows the details of Grinder Machine

Area	Rating of Motor	Running Power of Motor	
	HP	kW	
Punching-1	15	14.0	5 Times Rewind
Punching-2	15	7.0	New



Comparison with Energy Efficient Motor

Comparison with Energy Efficient Motor

Install New Energy Efficient Motor

Proposed System

- Install EE Motor
- Lower Power consumption
- More than 25% of energy saving at present power consumption

Install New Energy Efficient Motor

Saving = 14 kW x 25% x 6 hrs x 300 Days x Rs 7.50

Annual Savings Investment Payback : Rs. 0.47 Lakhs

- : Rs. 1.48 Lakhs
- : 38 Months

Summary – EE Motors

- National standard IS 12615: 2004 for energy efficient three phase induction motors from 0.37kW to 160 kW
- Energy savings are more at partial loads because Energy Efficient motors have a Flat Efficiency Vs. Load Characteristic
- Payback period of eff2 motor over IS-8789 motor is approx. 1500 to 2000 working hrs.
- Payback period of eff1 motor over eff2 motor is approx. 2500 - 3000 working hrs.

Sum-up

Sizing of the motor is critical and important

- Oversizing will result in
 - More losses
 - Lower efficiency
- Under-sizing will result in
 - Overloading
 - Overheating & failures
- Optimal sizing will result in
 - Minimum losses
 - Maximum efficiency

> History Card

- **Regular Updation**
- > Joint Ownership with the process team

> Energy Efficient Motor

Replacement – Rewound Motors

Thank you

© Confederation of Indian Industry

 $\ensuremath{\textcircled{}}$ Confederation of Indian Industry

Present Analysis –

	Unit I				
SN	Parameters	Units	Figures		
1	Fo Consumption	Litres/Day	80		
1	FO Cost	Rs./Kg	33		
3	Plant Running hours	Hours/Day	6		
4	Plant Running days	Days/Annum	300		
5	Weight of Product	gm	250		
6	Average Production	Pieces/Day	1500		
7	Specific Energy Consumption	Liters/Ton	187		

Present Analysis –

Unit II				
SN	Parameters	Units	Figures	
1	Fo Consumption	Litres/Day	70	
1	FO Cost	Rs./Kg	33	
3	Plant Running hours	Hours/Day	6	
4	Plant Running days	Days/Annum	300	
5	Weight of Product	gm	250	
6	Average Production	Pieces/Day	1500	
7	Specific Energy Consumption	Liters/Ton	186	

Present Analysis –

Unit III				
S N	Parameters	Units	Figures	
1	Fo Consumption	Litres/Day	80	
1	FO Cost	Rs./Kg	33	
3	Plant Running hours	Hours/Day	6	
4	Plant Running days	Days/Annum	300	
5	Weight of Product	gm	290	
6	Average Production	Pieces/Day	1700	
7	Specific Energy Consumption	Liters/Ton	162	
8	Specific Energy Consumption (Recommended)	Liters/Ton	72	
9	Saving Potential	Rs./Year	5,00,000	

© Confederation of Indian Industry

Annual Savings - Rs. 5.00 Lakhs

 $\ensuremath{\textcircled{}}$ Confederation of Indian Industry